

21000687

QP CODE: 21000687

Reg No :

M Sc DEGREE (CSS) EXAMINATION, JULY 2021

Fourth Semester

Faculty of Science

CORE - ME010402 - ANALYTIC NUMBER THEORY

M Sc MATHEMATICS,M Sc MATHEMATICS (SF)

2019 Admission Onwards

B052CF42

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any **eight** questions.

Weight 1 each.

- 1. Define Euler Totient function $\phi(n)$. Also prove that $\phi(n)$ is even for $n \geq 3$.
- 2. State Euler's summation formula and define Riemann zeta function.
- Explain the mutual visible lattice points. State a necessary and sufficient condition for two lattice points (a, b) and (m, n) to be
 mutually visible.
- 4. Derive Euler's summation formula from Abel's identity
- 5. Write any four equivalent forms of the prime number theorem
- 6. (a) If $ac \equiv bc \pmod{m}$ and if d = (m,c), then prove that $a \equiv b \pmod{\frac{m}{d}}$. (b) If c > 0 then prove that $a \equiv b \pmod{m}$ if and only if $ac \equiv bc \pmod{mc}$.
- 7. Define residue class $a \mod b$ and prove that for a given modulus m the m residue classes $\hat{1}, \hat{2}, \ldots, \hat{m}$ are disjoint and their union is the set of all integers.
- 8. If $\{a_1, a_2, \dots a_{\phi(m)}\}$ is a reduced residue system modulo m and if (k, m) = 1 then prove that $\{ka_1, ka_2, \dots ka_{\phi(m)}\}$ is also a reduced residue system modulo m.
- 9. Define quadratic residues. Find the quadratic nonresidues for p = 13
- 10. (a) Define $exp_m(a)$. (b) Let $m \ge 1$ and (a, m) = 1. Then prove that $a^k \equiv a^h \pmod{m}$ if and only if $k \equiv h \pmod{m}$, where $f = exp_m(a)$.

 $(8 \times 1 = 8 \text{ weightage})$

Part B (Short Essay/Problems)

Answer any **six** questions.

- 11. Prove that if both g and f * g are multiplicative then f is multiplicative
- 12. (a) Prove that if f is multiplicative then $\sum_{d|n}\mu(d)f(d)=\Pi_{p|n}(1-f(p))$. (b) State and prove the associative property relating \circ and *.
- 13. Show that the n^{th} prime P_n satisfies the inequality $\frac{1}{6}n \log n < P_n < 12(n \log n + n \log \frac{12}{e}), \forall n \geq 1$.
- 14. Show that (i) $\sum_{n \leq x} \psi(\frac{x}{n}) = x \log x x + O(\log x)$ and (ii) $\sum_{n \leq x} \vartheta(\frac{x}{n}) = x \log x x + O(x)$.
- 15. Given a prime p,let $f(x) = c_0 + c_1x + \dots + c_nx^n$ be a polynomial of degree n with integer coefficients such that $c_n \not\equiv 0 \pmod{p}$. Then prove that polynomial congruence $f(x) \equiv o \pmod{p}$ has at most n solutions.
- 16. Find all x which simultaneously satisfy the system of congruences $x \equiv 1 \pmod{3}$, $x \equiv 2 \pmod{4}$, $x \equiv 3 \pmod{5}$.
- 17. Prove that (-1|p) = -1 if p = 4m + 3 for some integer m. Also write a formula for (2|p) when p is an odd prime.
- 18. Let g be a primitive root mod p, where p is an odd prime. Then prove that the even powers g^2, g^4, \dots, g^{p-1} are the quadratic residues and the odd powers g, g^3, \dots, g^{p-2} are the quadratic nonresidues mod p.

 $(6 \times 2 = 12 \text{ weightage})$

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.

- 19. (a) For $x \ge 1$ prove that $\left|\sum_{n \le x} \frac{\mu(n)}{n}\right| \le 1$ with equality holding only if x < 2.

 (b) Prove that for every $x \ge 1$, $[x]! = \prod_{p \le p} \alpha^{(p)}$ where the product is extended over all primes $\le x$, and $\alpha(p) = \sum_{m=1}^{\infty} \left[\frac{x}{p^m}\right]$.

 (c) If $x \ge 2$, prove that $\log[x]! = x \log x x + O(\log x)$.
- 20. Let $\{a(n)\}$ be a nonnegative sequence such that $\sum_{n \leq x} a(n) [\frac{x}{n}] = x \log x + O(x)$ for all $x \geq 1$. Then prove the following

 (a) $\forall x \geq 1, we \ have \sum_{n \leq x} \frac{a(n)}{n} = \log x + O(1)$.
 - (b) There is a constant B such that $\sum_{n \leq x} a(n) \leq Bx, \forall x \geq 1$.
 - (c) There is a constant A > 0 and an $x_0 > 0$ such that $\sum_{n < x} x_n = x_0$.
- (a) Prove that for a given integer k > 0 there exist a lattice point (a, b) such that none of the lattice points (a+r,b+s), 0 < r ≤ k, o < s ≤ k, isvisible from the origin.
 (b) Let f be a polynomial with integer coefficients, let m₁,..., m_r be positive integers relatively prime in pairs, and let m = m₁m₂...m_r. Prove that the congruence f(x) ≡ 0(mod m) has a solution if and only if each of the congruences f(x) ≡ o(mod m_i) (i = 1,...,r) has a solution. Also show that if v(m) and v(m_i) denote the number of solutions of f(x) ≡ 0(mod m) and f(x) ≡ o(mod m_i) for i = 1,...,r, respectively, then v(m) = v(m₁)v(m₂)...v(m_r).
- 22. Assume n is not congruent to $0 \pmod{p}$ and consider the least positive residues mod p of the following $\frac{p-1}{2}$ multiples of $n:n,2n,3n,\ldots,\frac{p-1}{2}n$. Then if m denotes the number of these residues which exceed $\frac{p}{2}$, prove that $(n|p)=(-1)^m$.