

QP CODE: 21102573

Reg No

Name :

기미, 문항 남편이다. 경기가 없다고 있다.

B.Sc DEGREE (CBCS) EXAMINATIONS, OCTOBER 2021

First Semester

B.Sc Mathematics Model II Computer Science

Complementary Course - MM1CMT02 - MATHEMATICS - OPERATIONS RESEARCH - LINEAR PROGRAMMING

2017 Admission Onwards 35858972

Time: 3 Hours

Max. Marks: 80

Part A

Answer any **ten** questions.

Each question carries **2** marks.

- 1. Define the term linear combination of vectors.
- 2. Define vector space.
- 3. Find the Euclidean norm of the vector $[2-3\ 4]'$, and the inner product of the vectors $[2-3\ 4]'$ and [4-2-3]'
- 4. Explain the term convex linear combination of two points.
- 5. Define a line and half line in E_n .
- 6. What you mean by generating hyperplanes of a polytope.
- 7. Distinguish between separating and supporting hyperplanes
- 8. Define saddle point of a function $f(\mathbf{X}, \mathbf{Y})$
- 9. Define a convex function.
- 10. Explain general linear programming problem.
- 11. State the theorem relating to optimal solution of an LP problem.
- 12. Explain Surplus variable in a linear programming problem.

 $(10 \times 2 = 20)$

Part B

Answer any **six** questions.

Each question carries **5** marks.

13. Determine wheter the following set is a basis for ${f R}^3.$ or not

$$\{[1 \ 2 \ 3], [4 \ 5 \ 6], [0 \ 0 \ 0]\}$$

14. Which of the following are convex sets in E_n

$$1.S_1 = \{ \mathbf{X}; |\mathbf{X}| = 1 \}$$

$$2.S_1 = {\mathbf{X}; |\mathbf{X}| < 1}$$

$$3.S_1 = \{\mathbf{X}; |\mathbf{X}| \le 1\}$$

- 15. Indicate the following form is positive definite or negative definite $x_1^2+8x_1x_2+16x_2^2-3x_3^2$
- 16. Classify different types quadratic forms with examples.
- 17. Prove that sum of two convex functions is a convex function
- 18. Define a feasible solution.
- 19. Solve graphically Maximize x_1+x_2

subject to
$$x_1 - x_2 \geq 0$$
, $-3x_1 + x_2 \geq 3$, $x_1, x_2 \geq 0$

20. Solve by simlex method

$$\mathsf{Maximize} f = 2x_1 + x_2$$

Subject to

$$x_1-3x_2\leq 3$$

$$x_1 \leq 8$$

$$2x_1+x_2\leq 20$$

$$x_1+3x_2\leq 30$$

$$-x_1+x_2\leq 6$$

$$x_1 \geq 0, x_2 \geq 0$$

21. Use simplex method to solve

Maximize
$$f=2x_1+4x_2+x_3+x_4$$

Subject to

$$x_1+3x_2+x_4\leq 4$$

$$2x_1+x_2\leq 3$$

$$x_2+4x_3+x_4\leq 3$$

$$x_1,x_2,x_3,x_4\geq 0$$

22.

Find the eigen values of the matrix of the quadratic form $2x_1^2+4x_1x_2+2x_2^2+x_3^2$ and determine the nature of the form.

23. Solve graphically

Maximize f= $4x_1+2x_2$

Subject to

$$x_1+x_2\leq 8$$

$$x_1 = 4$$

$$x_1 \geq 0, x_2 \geq 0$$

24. Show that the following quadratic form is positive definite

$$3x_1^2+2x_1x_2+x_2^2$$

25. Solve

Minimize $f=2x_1-3x_2+6x_3$

Subject to

$$3x_1 - 4x_2 - 6x_3 \le 2$$

$$2x_1 + x_2 + 2x_3 \ge 11$$

$$x_1 + 3x_2 - 2x_3 \le 5$$

$$x_1 \geq 0, x_2 \geq 0, x_3 \geq 0$$

 $(2 \times 15 = 30)$