

QP CODE: 22000350

Reg No

:

Name

MSc DEGREE (CSS) EXAMINATION , JANUARY 2022 Second Semester

CORE - ME010201 - ADVANCED ABSTRACT ALGEBRA

M Sc MATHEMATICS,M Sc MATHEMATICS (SF)
2019 Admission Onwards

44499036

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any **eight** questions.

Weight **1** each.

- 1. Prove that the set of all algebraic numbers form a field.
- 2. Prove that a finite extension E of a finite field F is a simple extension of F.
- 3. Express $18x^2-12x+48$ as a product of its content with a primitive polynomial in $\mathbb{Z}[x]$
- 4. Check whether the function u for the integral domain $\mathbb Z$ given by $u(n)=n^2$ for nonzero $n\in\mathbb Z$ is a Euclidean norm.
- 5. Define Gaussian integers and a norm for it.
- 6. Prove that for $a,b\in\mathbb{R}$ with $b\neq 0$, the conjugate complex numbers a+bi and a-bi are conjugate over \mathbb{R} .
- 7. What is the order of $G(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q})$?
- 8. Prove that the splitting field over $\mathbb Q$ of x^3-2 is of degree $\,6$ over $\mathbb Q.$
- 9. Let f(x) be a polynomial in F[x] where F is a field. Define the group of f(x) over F.
- 10. Show that $x^4 + 1$ is irreducible in $\mathbb{Q}[x]$.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight **2** each.

- 11. Find the degree and a basis for $\mathbb{Q}(\sqrt{2},\sqrt{3},\sqrt{1}8)$ over \mathbb{Q}
- 12. If α and β are constructible real numbers, then prove that $\alpha+\beta, \alpha-\beta, \alpha\beta, \alpha/\beta$ when $\beta\neq 0$ are constructible.
- 13. Define an irreducible element in a PID. Prove that an ideal (ρ) in a PID is maximal if and only if p is an irreducible.

- 14. Define(i) UFD, (ii) PID, (iii) Euclidean domain
- 15. Let $E=\mathbb{Q}(\sqrt{2},\sqrt{3})$ and $F=\mathbb{Q}$. Let $\sigma_1=\psi_{\sqrt{2},-\sqrt{2}}$, $\sigma_2=\psi_{\sqrt{3},-\sqrt{3}}$ and $\sigma_3=\sigma_1\sigma_2$. Find the fixed fields $E_{\{\sigma_1,\sigma_3\}}$, $E_{\{\sigma_3\}}$ and $E_{\{\sigma_2,\sigma_3\}}$.
- 16. Let E be a finite extension of a field F. Let σ be an isomorphism of F onto a field F' and let $\overline{F'}$ be an algebraic closure of F'. Prove that the number of extensions of σ to an isomorphism τ of E onto a subfield of $\overline{F'}$ is finite and independent of F', $\overline{F'}$ and σ .
- 17. Let \overline{F} be an algebraic closure of a field F and let $f(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0$ be a monic polynomial in $\overline{F}[x]$. If $(f(x))^m\in F[x]$ and $m\cdot 1\neq 0$ in F, prove that $f(x)\in F[x]$, that is, all $a_i\in F$.
- 18. State and prove Primitive element theorem.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.

- 19. a) Let F be a field and let f(x) be a nonconstant polynomial in F[x]. Then prove that there exists an extension field E of F and an $\alpha \in E$ such that $f(\alpha)=0$
 - b) Construct a finite field of 4 elements
- 20. a) If D is a UFD, then prove that a product of two primitive polynomials in D[x] is again primitive.
 b) Let D be a UFD and let F be a field of quotients of D. Let f(x) in D[x] has degree greater than 0. If f(x) is irreducible in D[x], then prove that f(x) is also irreducible in F[x]. Also if f(x) is primitive in D[x] and irreducible in F[x], then prove that f(x) is irreducible in D[x].
- 21. a) State and prove the isomorphism extension theorem.

 b) Prove that any two algebraic closures of a field F are isomorphic under an isomorphism leaving each element of F fixed.
- 22. a) Let F be a field and f(x) be an irreducible polynomial in F[x]. Prove that all zeros of f(x) in \overline{F} have the same multiplicity.
 - b) Let F be a field and f(x) be an irreducible polynomial in F[x]. Prove that f(x) has a factorization in $\overline{F}[x]$ of the form $a\prod_i(x-\alpha_i)^{\nu}$ where α_i are the distinct zeros of f(x) in \overline{F} and $a\in F$.
 - c) If E is a finite extension of a field F, then prove that $\{E:F\}$ divides [E:F].

(2×5=10 weightage)