

QP CODE: 22000702

:	**************
	:

M Sc DEGREE (CSS) EXAMINATION, APRIL 2022 Third Semester

Faculty of Science

CORE - ME010304 - FUNCTIONAL ANALYSIS

M Sc MATHEMATICS,M Sc MATHEMATICS (SF) 2019 ADMISSION ONWARDS 705EBAD2

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any eight questions.

Weight 1 each.

- Let X be an n dimensional vector space. Prove that any proper subspace Y of X has dimension less than
 n.
- 2. Define convergence and absolute convergence in a normed space.
- 3. Define a linear operator on a vector space and prove that the range of a linear operator is a vector space.
- 4. Let X and Y be normed spaces. Show that a linear operator $T: X \to Y$ is bounded if and only if T maps bounded sets in X into bounded sets in Y.
- 5. Let X and Y be finite dimensional vector spaces over the same field and $T: X \to Y$ be a linear operator. Prove that T determines a unique matrix with respect to a basis for X.
- 6. Define an inner product space. Give an Example.
- 7. Let $M
 eq \phi$ be a subset of an inner product space X. Show that M^\perp is a subspace of X.
- 8. Define a Total orthonormal set.
- 9. Define Hilbert-adjoint operator. Let H_1 and H_2 are Hilbert spaces and $S,T\in B(H_1,H_2)$ then prove that $(S+T)^*=S^*+T^*$
- 10. Prove that the product of two bounded linear operators S and T on a Hilbert space H is self-adjoint if and only if the operators commute ie ST = TS.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight **2** each.

11. Show that $\,C[a,b]$ is complete.

- 12. Prove that every finite dimensional subspace Y of a normed space X is complete.
- 13. Let T be a bounded linear operator. Then prove that i)if $x_n o x$, where $x_n, x \in D(T)$ implies $Tx_n o Tx$
 - ii) Prove that the Null space of T is closed
- 14. Prove that there exists a canonical embedding from a vector space X to X^{**} .
- 15. State and prove Bessel inequality.
- 16. Let e_k be an orthonormal sequence in a Hilbert space H. Prove that if $\sum_{k=1}^\infty \alpha_k e_k$ converges, then $\alpha_k=\langle x,e_k\rangle$, where $x=\sum_{k=1}^\infty \alpha_k e_k$.
- 17. State Zorn's lemma. Using Zorn's lemma, prove that in every Hilbert space $H \neq \{0\}$, there exists a total orthonormal set.
- 18. Let E be an ordered basis of \mathbb{R}^n and $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear operator. If T is represented by the matrix T_E , then prove that the adjoint operator T^{\times} is represented by the transpose of T_E .

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.

- 19. (i) Prove that a compact subset M of a metric space X is closed and bounded.
 - (ii) Prove that a closed and bounded set in a metric space need not be compact.
 - (iii) Prove that in a finite dimensional normed space X, any subset M of X is compact if and only if M is closed and bounded.
- 20. i)Show that the dual space of l^1 is l^∞ ii)Show that dual space X^l of a normed space X is a Banach space.
- 21. State and prove Riesz representation theorem.
- 22. State and prove Hahn-Banach theorem for extension of linear functionals.

(2×5=10 weightage)