



QP CODE: 22000703

| Reg | No : |  |
|-----|------|--|
|     |      |  |

Name :

# M Sc DEGREE (CSS) EXAMINATION, APRIL 2022

## **Third Semester**

Faculty of Science

### **CORE - ME010305 - OPTIMIZATION TECHNIQUE**

M Sc MATHEMATICS,M Sc MATHEMATICS (SF)
2019 ADMISSION ONWARDS
F4FFCFE6

Time: 3 Hours

Weightage: 30

#### Part A (Short Answer Questions)

Answer any **eight** questions.

Weight **1** each.

- 1. Define degenerate basic feasible solution of an LPP.
- 2. Write the dual of the following LP problem and verify that the dual of the dual is primal. Maximize  $f(X)=2x_1+3x_2$ , Subject to  $x_1-x_2\leq 2, 3x_1+5x_2\geq 4; x_1,x_2\geq 0$
- 3. If optimal solution of related ILPP exist and  $T_F \neq \phi$  prove that optimal solution of associated LPP exist and it is the lower bound for the same.
- 4. Explain Knapsack Problem and its mathematical model.
- 5. Define the following with suitable example.
  - (i) Directed Graph (ii) Chain (iii) Path
- 6. Write short note on scheduling sequential activity.
- 7. State maximum flow minimum cut theorem.
- 8. Define the terms (i) semi positive definite (ii) semi negative definite
- 9. What are the two phases used in Hooke and Jeeves algorithm. Explain.
- 10. Minimize  $f(X) = x^2 + y^2 + 2$  subject x+y=3.

(8×1=8 weightage)



## Part B (Short Essay/Problems)

Answer any six questions.

Weight 2 each.

- 11. Define canonical form of equations. What is the advantage of putting the equations in a canonical form?
- 12. Prove that the optimum value of f(X) of the primal if it exists is equal to the optimum value of  $\varphi(Y)$  of the dual.
- 13. Solve graphically: Max  $f(X) = 6x_1 + 5x_2$  subject to  $x_1 3x_2 \le 7, 3x_1 + 4x_2 \le 12, 5x_1 + x_2 \le 5, x_1 \ge 0, x_2 \ge 0.$
- 14. Solve the ILPP using cutting plane method  $\begin{aligned} & \textit{Min } z = 9x_1 + 10x_2 \textit{ subject to } \\ & 0 \leq x_1 \leq 10, 0 \leq x_2 \leq 8, 3x_1 + 5x_2 \geq 45, x_1 \geq 0, x_2 \geq 0 \textit{ for } x_1 \textit{ and } x_2 \textit{ are integers.} \end{aligned}$
- 15. What you mean by goal programming.

  A factory can manufacture two products A and B. The profit on a unit of A is Rs. 80 and of B is Rs.

  40. The maximum demand of A is 6 units per week and B is 8 units per week. This manufacturer has set a goal of achieving a profit of Rs. 640 per week. Formulate the problem as goal programming and solve it.
- 16. Explain how to find the minimum path in a graph with arc lengths are non negative.
- 17. Define gradient vector and Hessian matrix. Find the point at which  $f(X)=x_1+2x_3-x_1^2-x_2^2-x_3^2$  is maximum.
- 18. Write down all Kuhn –Tucker conditions of Minimize  $z=100-1.2x_1-1.5x_2+0.3x_1^2+0.05x_2^2$  subject to  $x_1+x_2\geq 35, x_1\leq 11, x_2\leq 13; x_1,x_2\geq 0$ .

(6×2=12 weightage)

# Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.

- 19. Solve the following LPP using simplex method Maximize  $f(X)=4x_1+5x_2$  Subject to  $x_1-2x_2\leq 2, 2x_1+x_2\leq 6, x_1+2x_2\leq 5, -x_1+x_2\leq 2, x_1\geq 0, x_2\geq 0$
- 20. Solve the ILPP using Branch and Bound method  $Min\ z = 5x_1 + 7x_2$  subject to  $2x_1 + x_2 \le 13, 5x_1 + 9x_2 \le 41, x_1 \ge 0.x_2 \ge 0$  and  $x_1, x_2$  are integers.



21. Find the minimum spanning tree in the following undirected graph.

Maximize the function 
$$f(n)=egin{cases} x/2 & \text{if } n\leq 2 \\ -x+3 & \text{if } n>2 \end{cases}$$
 in the interval (0,3) by Fibonacci method using N = 6 and  $\epsilon=0.5$ .

(2×5=10 weightage)