

QP CODE: 22100620

Reg No :

Name :

B.Sc DEGREE (CBCS) REGULAR / REAPPEARANCE EXAMINATIONS, APRIL 2022

Third Semester

Core Course - MM3CRT01 - CALCULUS

Common to B.Sc Computer Applications Model III Triple Main, B.Sc Mathematics Model I, B.Sc Mathematics Model II Computer Science

2017 Admission Onwards

805BD574

Time: 3 Hours

Max. Marks: 80

Part A

Answer any ten questions.

Each question carries 2 marks.

- 1. Expand e^x using Maclaurin's series.
- 2. Find the points of inflection of the curve $y = x^3 9x^2 + 7x 6$.
- 3. Find the radius of curvature at any point on the curve $\,s=c an\psi$
- Define asymptotes of a curve.
- 5. If f(x,y)=x-y, find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$
- 6. State the first derivative test for local extreme values.
- 7. Write down the Lagrange multipliers equation to find the extreme values of a function f(x,y,z) subject to two constraint $g_1(x,y,z)=0$ and $g_2(x,y,z)=0$
- 8. Evaluate the volume of the solid of cross sectional area $A(x)=2+x^2 \ \ ext{from } x=1 \ \ ext{to}$ x=2 .
- Write down the formula for calculating the volume of solid of revolution about the X-axis and Y-axis.
- 10. Find the length of the curve $y=x\sqrt{3}+1$ from x=1 to x=2.
- 11. Sketch the region of integration and evaluate the integral

$$\int_{\pi}^{2\pi} \int_{0}^{\pi} (\sin x + \cos y) \, dx \, dy$$

Define the Jacobian $\dfrac{\partial(x,y,z)}{\partial(u,v,w)}$

(10×2=20)

Part B

Answer any six questions.

Each question carries 5 marks.

- 13. Find the Taylor series generated by f(x) = 1/x at x=2. Discuss the convergence of the series.
- 14. Find the equation of the circle of curvature at the point (0,b) of the ellipse $rac{x^2}{a^2}+rac{y^2}{b^2}=1.$
- 15. Show that the function satisfies Laplace equation $f(x,y) = e^x(x\cos y y\sin y)$
- 16. Evaluate $\dfrac{\partial w}{\partial x}, \ \dfrac{\partial w}{\partial y} \ \dfrac{\partial w}{\partial z}$ in terms of $x\,,y\,,z$ if $w=\dfrac{p-q}{q-r}, \ p=x+y+z, \ q=x-y+z, \ r=x+y-z,$
- 17. Find the volume of the solid generated when the region under the curve $y=x^2$ over the interval [0,2] is rotated about the line y=-1 using Washer method..
- 18. Find the area of the surface generated by revolving the curve $x=y^2\,;\,1\leq x\,\leq 9,$ about the X-axis.
- 19. Sketch the region of integration and write an equivalent double integral of $\int_0^2 \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} 5\,x\,dy\,dx \ \ \text{with the order of integration reversed}.$
- 20. Find the volume of the region cut from the cylinder $x^2+y^2=4$ by the planes $z=0 \ {
 m and} \ x+z=3.$
- Evaluate the cylindrical coordinate integral $\int_0^{2\pi} \int_0^{\frac{\theta}{2\pi}} \int_0^{3+24r^2} dz \, r \, dr \, d\theta$ (6×5=30)

Part C

Answer any two questions.

Each question carries 15 marks.

22. (a). Find the evolute of the rectangular hyperbola xy=1 (b). If (X,Y) be the coordinates of centre of curvature of the curve $\sqrt{x}+\sqrt{y}=1$ at (a,b), then prove that X+Y=3(a+b).

- 23. (a). Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ if $f(x,y)=x an^{-1}(xy)$
 - (b). Find the shortest distance from the origin to the hyperbola $x^2+8xy+7y^2=225$
- 24. Compute the volumes of the solid generated by revolving the region bounded by y=x and $y=x^2$ about each coordinate axis using (i) the shell method (ii) the washer method.
- 25. (a). Evaluate the Jacobian of the transformation from cylindrical coordinate system (r, θ, z) to rectangular system (x, y, z).
 - (b). Evaluate $\iint_R xy(x^2+y^2)^{3/2}\ dA$ where R is the region in the first quadrant bounded by the circle $x^2+y^2=1$.

 $(2 \times 15 = 30)$