

QP CODE: 22102734

Reg No

:

Name

B.Sc DEGREE (CBCS) REGULAR EXAMINATIONS, AUGUST 2022

Fourth Semester

B.Sc Mathematics Model II Computer Science

Complementary Course - MM4CMT02 - MATHEMATICS - OPERATIONS RESEARCH - NON LINEAR PR

2020 Admission Only

C1365FCA

Time: 3 Hours

Part A

Answer any **ten** questions.

Each question carries **2** marks.

- 1. Using graphical method, list all integer feasible solutions of $\, {
 m Min} \ x_1 x_2 \,$ subject to $2x_1 + 3x_2 \leq 6, x_1, x_2 \geq 0 \,$ and $x_1, x_2 \,$ are integers
- 2. Give the relation between S_F, T_F and [T_F] in Integer Programming Problem.
- 3. Define Branching
- 4. Find a suiatable cutting plane for the ILP

 $Max x_1 + 2x_2$

Subject to $2x_2 \leq 7 \;,\; x_1 + x_2 \leq 7, 2x_1 \leq 11, x_1 \geq 0, x_2 \geq 0$

- Give and example of a Nonlinear Programming problem.
- 6. Define Lagrangian Function
- 7. State Kuhn-Tucker Theorem
- 8. Find the Lagrangian function for the following problem $Min~x_1+x_2^2$ Subject to $x_1+x_2\leq 4, x_1\leq 8,~x_1,x_2$
- Mark on the graph the set of feasible solutions of

$$(x_1-1)(x_2-1) \leq 1, \; x_1+x_2 \geq 6, \; x_1,x_2 \geq 0$$

- 10. Define Quadratic Programming Problem.
- 11. What assumptions can be made in the minimum of Quadratic Programming Problem if P
 eq 0 and X'CX is Posit
- 12. Show that the function $sin(x_1+x_2)$ is not separable

Part B

Answer any six questions.

Each question carries 5 marks.

- 13. By graphical method list all integer feasibe solutions of $Min\ x_1-x_2$, subject to $x_1-x_2\leq 4, x_1+4x_2\leq 4, x_1, x_2$ non-negative integers. Aslo find the maxim
- 14. Solve by Branch and Bound Method Maximise x_1+2x_2 subject to $5x_1+7x_2\leq 21, -x_1+3x_2\leq 8, \ x_1,x_2$ non negative integers

Turn Ovo

- 15. Using Branch and Bound method, branch the following problem into two sub-problems $Max~x_1+x_2-2x_3$ Subject to $x_1+x_2+x_3\leq 5, 3x_1+2x_2-x_3\leq 6$, x_1,x_2,x_3 are non-negative i
- 16. Explain Branch and Bound Method?
- 17. Solve graphically $(x_1-4)^2+(x_2-3)^2$, Subject to $x_1+x_2\leq 5, x_1+3x_2\leq 6, x_1, x_2\geq 0$
- 18. Write K-T conditions for Minimise $x_1^2-x_2^2-x_2x_3^2$ subject to $x_1^2+x_2+x_3=3, x_1^2-5x_2^2+x_3\leq 0, x_1, x_2$
- 19. Minimise $f=(x_1+x_2)^2+(x_2-2)$ over the region $0\leq x_1\leq 2,\ 0\leq x_2\leq 1$, by writing the K-T conditions saddle point.
- 20. Solve by the method of Quadratic programming minimise $-6x_1+2x_1^2-2x_1x_2+2x_2^2$ subject to $x_1+x_2\leq 2, x_1,x_2\geq 0$
- 21. Solve the following Separable Programming Problem ${\rm Max}\ 2x_1^2+x_2^2,\ {\rm Subject\ to}\ x_1+x_2\leq 4, x_1-2x_2\leq 6, x_1,x_2\geq 0$

Part C

Answer any **two** questions.

Each question carries **15** marks.

- 22. Solve by cutting plane method $Min\ x_1-x_2-x_3$ subject to $x_1+x_2+x_3\leq 5, x_1+x_2+2x_3\leq 4, x_1, x_2, x_3$ are non-negative integration.
- 23. Solve the following problem graphically and also by K-T conditions $\min x_1-x_2 \text{ subject to } x_1+x_2 \leq 6, x_2-3x_3 \leq 3, x_1, x_2 \geq 0$
- 24. Solve by K-T conditions $\operatorname{Max} 4x_1 5x_2 \text{ subject to } x_1 + 4x_2 \leq 8, x_1 2x_2 \leq 4, x_1, x_2 > 0$
- 25. Solve by the method of Separable programming Maximise $9-(x_1-3)^2-(x_2-2)^2$ subject to $4x_1^2+x_2^2\leq 16, x_1,x_2\geq 0$