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Part A

Answer any ten quesfrbns.

Each question carries 2 marks.

1. Define an arc length parameter for a smooth space curye.

2. Define the curvature of a smooth plane curve. Give a formula for calculating curvature of

a smooth plane curve r(t).

3. Define the tangent plane and the normal line at a point on a smooth surface in space.

4. Find the accelaration for the position vector r(t) : (2cost)i, + (zsi,nt) j at t : 0 .

5. Find the potential function f for the field F -- 2ri, + Tyj * 42k,.

6. Define flux of a continuous vector field F across an oriented surface S in the positive

direction in terms of double integral.

7. Check whether the integer 1729 is an absolute pseudoprime or nol.

L Define quadratic congruence with example.

9. Prove Q(n) : n - l if and only if n is prime.

10. Define Laplace transform of a function and hence prove that -?(e"t) : *

!tr
_ _a

ls+1/z)"

11' 
Find g-L
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12. Evaluate 9(sir,2 wt)

(10x2=20)

Part B

Answer any six questions.

Each question carries 5 marks.

13. Give the vector equation and component equation for the plane through

Pa(ro, gs, zo) normal to n : ,4i + Bj + Ck. Also find an equation for the plane

through ,4(0, 0, L), B(2,0,0) and C(0,3, 0).

14. Define derivative for a vector-valued function r(t) : /(r)i + g(t): + h(t)k. lf r is the

position vector of a particle moving along a smooth curve in space, then define the

particle's velocity vector, direction of motion, speed and acceleration vector.

15. Find the flux of the field F : (r + y)i - (*' + y2) j across the triangle with vefiices

(1,0), (0, 1), (-1, o)

16. Find the area of the surface cut from the bottom of the paraboloid 12 + A2 - z : 0 by

the plane z: 4 .

17. Prove that for a scalar function f (*ry, z), curl(grad .f) : 0.

18, Prove: lf ca: cb (mod n),ttrena:b (mod fi),*h"ru4:gcd(c,n).
19. Derive the congruence' oe : a (mod 30) for all a.

20. Using convolution theorem, solve grl' * 5y' * 4y :2 e-zt, g(0) : A, A' (0) : 0

21. sotve y(t) + Z"' fi e-"y(r) d,r : t et .

(6x5=30)

Part C

Answer any two questions.

Each question carries 15 marks.

1. Define the gradient vector of a function in the plane. Find an equation for the

tangent to the curve n2 - y: L at the point (\/2, L).

2. Find the derivative of f (r,y, z) : *3 - *A' - z atPo(1, 1,0) in the

direction of v - 2i - 3j + 6k.ln what direction does / change most rapidly

at P0, and what are the rates of ehange in these directions?

22.
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23. a) State Stoke's Theorem.

b) Find the Circulation of the field F : (*' - di * Azj + 12 k around the curve C in

which the plane z:2 meets the cone ,: .1fd *F, counterclockwise as viewed

from above.

25.

1. State and prove Fermat's theorem.

2. Prove: lf p is a prime, then ap : o (mod p) tor any integer a.

1. Let f (t), f ' (t) Ue continuous and satisfy the growth restriction for all t > 0.

Lel f 
tt (t) Oe piecewise continuous on every finite interval on the semi-axis

, > 0. Prove that the Laplace transform ot f " (t) satisfies
g(f"): szgu) -.rf(0) - /'(0)

2. Solve the lnitial value problem y" + 2y' + 2A :0, y(0) : l, U' (0) : -3

(2x 15=30)

24.


