

QP CODE: 22103175

Reg No

:

Name

.

B.Sc DEGREE (CBCS) REGULAR / IMPROVEMENT / REAPPEARANCE EXAMINATIONS, OCTOBER 2022

Second Semester

Core Course - MM2CRT01 - MATHEMATICS - ANALYTIC GEOMETRY, TRIGONOMETRY AND DIFFERENTIAL CALCULUS

(Common for B.Sc Computer Applications Model III Triple Main, B.Sc Mathematics Model I, B.Sc Mathematics Model II Computer Science)

2017 ADMISSION ONWARDS

8CC46AE4

Time: 3 Hours

Max. Marks: 80

Part A

Answer any ten questions.

Each question carries 2 marks.

- 1. Derive the condition that the line y = mx + c is a tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$.
- 2. Derive the equation of chord of contact of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$.
- 3. Chords of a parabola are drawn through a fixed point. Show that the locus of their middle points is another parabola.
- 4. Find the condition that the lines lx + my + n = 0 and l_1x + m_1y + n_1 = 0 to be conjugate with respect to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 5. Derive the polar equation of a parabola.
- 6. Find the equation for a circle centered at the pole. Give an example.
- 7. Prove that $\sin 3x = 3 \sin x 4 \sin^3 x$.
- 8. Prove that $\tanh^2 x + \operatorname{sech}^2 x = 1$.
- 9. Factorize x⁹ + 1
- 10. If $y=e^{-x}(Ax+B)$, prove that $rac{d^2y}{dx^2}+2rac{dy}{dx}+y=0$.
- 11. Find the nth derivative of cos(ax+b).

12. Determine $lim[rac{1}{x-2}-rac{1}{log(x-1)}]$ as x o 2.

 $(10 \times 2 = 20)$

Part B

Answer any six questions.

Each question carries 5 marks.

- 13. Two tangents from a point to the parabola $y^2 = 4ax$ make with each other an angle 45^0 . Prove that the locus of their point of intersection is given by $y^2 - 4ax = (x+a)^2$.
- 14. Find the orthoptic locus of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$.
- 15. Find the equation of the polar of (x_1,y_1) with respect to (a) the parabola $y^2 = 4ax$ (b) the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$.
- 16. A tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, whose centre is C, meets the circle $x^2 + y^2 = a^2 + b^2$ at Q and Q₁. Prove that the lines CQ and CQ₁ are conjugate diameters of the ellipse.
- 17. Replace the polar equation $r^2 = 4r\cos\theta$ by equivalent cartesian equation, and identify its graph.
- 18. Sum the series $rac{1}{2}sinlpha+rac{1.3}{2.4}sin2lpha+rac{1.3.5}{2.4.6}sin3lpha+\dots$
- 19. Sum the series $sinhlpha-rac{1}{2}sinh2lpha+rac{1}{3}sinh3lpha-\dots$
- 20. Find the nth derivative of $y=rac{x}{x^2+a^2}$.
- 21. Determine $lim[2-rac{x}{a}]^{tanrac{\pi x}{2a}}$ as x o a.

 $(6 \times 5 = 30)$

Part C

Answer any two questions.

Each question carries 15 marks.

- 22. If P and D are the extremities of semi-conjugate diameters of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, show that
 - (a) the locus of the middle point PD is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{1}{2}$.
 - (b) the locus of the point of intersection of the tangents at P and D is $\frac{x^2}{a^2} + \frac{y^2}{h^2} = 2$.
 - (c) the locus of the foot of the perpendicular on PD from the centre of the ellipse is $a^2x^2 + b^2y^2 = 2(x^2 + y^2)^2$.

- 23. A chord PQ of a conic subtends an angle of 2β of constant magnitude at the pole. Find the locus of the intersection of the tangents at P and Q.
- 24. Separate into real and imaginary parts $sin^{-1}(cos\theta+isin heta)$, where heta is real.
- 25. (a) If $y=sin(msin^{-1}x)$, show that $(1-x^2)y_{n+2}=(2n+1)xy_{n+1}+(n^2-m^2)y_n \text{ and find } y_n(0).$ (b) If $f(x)=x^2tanx$, prove that f $^n(0)$ nc_2 f n - $^2(0)$ + nc_4 f n - $^4(0)$ -.....= $sin\frac{n\pi}{2}$. (2×15=30)