

MSc DEGREE (CSS) EXAMINATION , NOVEMBER 2022 Second Semester

CORE - ME010205 - MEASURE AND INTEGRATION

M Sc MATHEMATICS,M Sc MATHEMATICS (SF)
2019 Admission Onwards
4FD50FF3

Time: 3 Hours Weightage: 30

Part A (Short Answer Questions)

Answer any **eight** questions.

Weight **1** each.

- 1. Prove that the Lebesgue outer measure is translation invariant.
- Define measurability of a set. Prove that any countable set is measurable.
- Explain the construction of Cantor set.
- 4. Define Lebesgue integral of a simple function ϕ defined on a set of finite measure E. Assuming that Lebesgue integration is linear, prove that it is monotonic on simple functions.
- 5. Prove that Riemann integrablity of bounded function f defined on a closed bounded interval [a,b] implies Lebesgue integrablity of f.
- 6. Define integrablity of a nonnegative Lebesgue measurable function. Prove that if f is Lebesgue integrable over E, then f is finite valued a.e.
- 7. Let (X,\mathcal{M},μ)) be a measure space. If $A\subseteq B\subseteq X$ with $\mu(A)=0$, prove that $\mu(B\sim A)=\mu(B)$.
- 8. Let (X, \mathcal{M}, μ) be a general measure space and $\{f_n\}$ be a sequence of measurable functions on X. Prove that $sup\{f_n\}$ and $inf\{f_n\}$ are measurable.
- 9. Let (X, \mathcal{M}, μ) be a measure space and ψ be a nonnegative simple functions on X. If A and B are disjoint measurable subsets of X, then prove that $\int\limits_{AUB}\psi d\mu=\int\limits_{A}\psi d\mu+\int\limits_{B}\psi d\mu$
- 10. Define Measure space, Product Measure, Measurable Rectangle and x-section of a function.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight 2 each.

- 11. Let E be any set of real numbers. Then prove that E is measurable if and only if for each $\epsilon>0$, there is an open set $\mathcal O$ containing E for which $m^*(\mathcal O-E)<\epsilon$
- 12. If $\{A_k\}_{k=1}^\infty$ is an ascending collection of measurable sets, then prove that $m\left(\bigcup_{k=1}^\infty A_k\right)=\lim_{k\to\infty} m(A_k)$.
- 13. Define Lebesgue measurability of a function. Prove that a function f on a Lebesgue measurable set E is Lebesgue measurable if and only for each open set O the inverse image $f^{(-1)}(O)$ is Lebesgue measurable.
- 14. Define pointwise convergence a.e of a sequence $\{f_n\}$ of functions. Prove that, if $\{f_n\}$ is sequence of measurable functions on E that converges pointwise a.e. to f, then f is measurable.
- 15. Let f be a real integrable function on the Lebesgue measure space (R,\mathcal{M},m) . For $E\in\mathcal{M}$ define $\nu(E)=\int_E fdm$. Find the Hahn and Jordan decompositions for ν .
- 16. Prove that a countable collection of measurable sets is measurable.
- 17. Let (X,\mathcal{M},μ) be a measure space and $\{f_n\}$ an increasing sequence of nonnegative measurable functions on X. Define $f(x)=\lim_{n\to\infty}f_n(x)$ for each x in X. Then prove that $\lim_{n\to\infty}\int\limits_X f_n\ d\mu=\int\limits_X f\ d\mu$
- 18. Let (X,\mathcal{M},μ) be a measure space and $\{h_n\}$ a sequence of non-negative integrable functions on X. Suppose that $\{h_n(x)\}\to 0$ for all x in X. Then prove that $\lim_{n\to\infty}\int\limits_X h_n\ d\mu=0$ if and only if $\{h_n\}$ is uniformly integrable and tight.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any **two** questions.

Weight 5 each.

- 19.
- 1. Define algebra and σ -algebra.
- 2. Prove that the collection of measurable sets is a σ -algebra that contains the σ -algebra of Borel sets
- 20. Let f and g are bounded Lebesgue measurable functions defined on a set of finite measure E. Prove that
 - 1) For any lpha and $eta_{\!\scriptscriptstyle L}\int_E (lpha f + eta g) = lpha \int_E f + eta \int_E g$
 - 2) If $f \le g$ on E, then $\int_E f \le \int_E g$
 - 3) For disjoint subsets A and B of E , $\int_{AUB} f = \int_A f + \int_B f$

- 21. (i) State and prove the Hahn decomposition theorem.
 - (ii) Prove that the Hahn decomposition is unique except for null sets.
- 22. (a) State and prove Radon Nikodym Theorem.
 - (b) Explain Radon Nikodym derivative

(2×5=10 weightage)