

QP	CO	DE	23	1	04	6	9	1

Reg No	

Name :

B.Sc DEGREE (CBCS) REGULAR/IMPROVEMENT/REAPPEARANCE EXAMINATIONS, FEBRUARY 2023

First Semester

Core Course - MM1CRT01 - FOUNDATION OF MATHEMATICS

(Common to B.Sc Mathematics Model I, B.Sc Mathematics Model II Computer Science, B.Sc Computer Applications Model III Triple Main)

2017 Admission Onwards

C789FB92

Time: 3 Hours

Max. Marks: 80

Part A

Answer any ten questions.

Each question carries 2 marks.

- 1. State distributive laws of equivalence.
- 2. Define Existential quantifier.
- 3. Define Universal instantiation.
- 4. Use Venn diagram to show the relationship A is a subset of B
- 5. Define the sets $A \cup B$ and $A \cap B$.
- 6. Let f_1, f_2 be functions from R to R defined by $f_1(x) = x^2$ and $f_2(x) = x x^2$. What is $(f_1f_2)(x)$?
- 7. Let R be the relation $R = \{(a,b) \ / \ a \ divides \ b \ \}$ on the set of integers.Find R⁻¹.
- 8. Draw the diagraph that represent the relation $\{(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)\}$ on $\{1,2,3\}$
- 9. Check whether the relation $R = \{(a,b): a \ and \ b \ are \ of \ same \ age \ \}$ an equivalence relation. Explain.
- 10. Frame a quartic equation with rational coefficients one of whose roots is $\sqrt{5}+\sqrt{2}$.

- 11. If $\alpha,\beta,\gamma,\delta$ are the roots of the equation $x^4+4x^3-5x^2-8x+6=0$, find the values of $\alpha+\beta+\gamma+\delta$ and $\alpha\beta\gamma\delta$.
- 12. Define biquadratic equation? Write the general form of the quartic equation which can be solved using Ferrari's method?

 $(10 \times 2 = 20)$

Part B

Answer any six questions.

Each question carries 5 marks.

- 13. Check whether $p \vee \neg (p \wedge q)$ a tautology.
- 14. Show that $\exists x [P(x) \land Q(x)]$ and $\exists x P(x) \land \exists x Q(x)$ are not logically equivalent.
- 15. Define Modus tollens and Modus ponens. Write the truth table of the above rules of inference for propositional logic.
- 16. Prove that $\overline{A\cap B}=\overline{A}\cup \overline{B}$
- 17. Define and plot the greatest integer function
- 18. Let $S = \{1, 2, 3, 4, 5, 6\}$. Show that the collection of sets $A_1 = \{1, 2, 3\}$, $A_2 = \{4, 5\}$ and $A_3 = \{6\}$ forms a partition of S.List the ordered pairs in the equivalence relation R produced by this partition.
- 19. Determine whether the posets with these Hasse Diagrams are lattices.

- 20. Solve by Cardan's method $x^3-9x-12=0$.
- 21. Solve $x^6 9x^5 + 21x^4 21x^2 + 9x 1 = 0$?

 $(6 \times 5 = 30)$

Part C

Answer any two questions.

Each question carries 15 marks.

- 22. (a) Prove that $\sqrt{2}$ is irrational by the method of contradiction.
 - (b) Show that the following statements about the integer n are equivalent.
 - (i) n is even
 - (ii) n-1 is odd.
 - (iii) n^2 is even.
- 23. a) Let f:A o B and S,T be subsets of A. Show that $f(S\cup T)=f(S)\cup f(T)$ and $f(S\cap T)\subseteq f(S)\cap f(T)$
 - b) Consider the equivalence relation $R=\{(x,y)/x-y \ \ {
 m is\ an\ integer}\}.$ What are the equivalence classes of 1 and $\frac{1}{2}$ for this relation
- 24. Let R and S be relations on a set A represented by the matrices

$$M_R = egin{bmatrix} 0 & 1 & 0 \ 1 & 1 & 1 \ 1 & 0 & 0 \end{bmatrix} \ and \ M_S = egin{bmatrix} 0 & 1 & 0 \ 0 & 1 & 1 \ 1 & 1 & 1 \end{bmatrix}$$
 . Find the matrices that represents $(a)\ R\ \cup\ S\ (b)\ R\ \cap\ S\ (c)\ S\ \circ\ R\ (d)\ R\ \circ\ R\ (e)\ R\ \oplus\ S$

- 25. a) If α, β, γ are the roots of $x^3+px+q=0$ form the equation whose roots are $\alpha^2+\beta\gamma, \beta^2+\gamma\alpha, \gamma^2+\alpha\beta$.
 - b) Find the equation whose roots are the roots of $2x^5 9x^3 + 4x + 3 = 0$ each increased by 2.

 $(2 \times 15 = 30)$