

QP CODE: 23002637

Reg No :

Name :

M Sc DEGREE (CSS) EXAMINATION, MARCH 2023

Third Semester

Faculty of Science

CORE - ME010301 - ADVANCED COMPLEX ANALYSIS

M Sc MATHEMATICS, M Sc MATHEMATICS (SF)
2019 ADMISSION ONWARDS
ECC8C5DC

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any eight questions.

Weight 1 each.

- 1. State Hadamard's three circle theorem.
- 2. If |a| < R, then evaluate $\int\limits_{|z|=R} \frac{(R^2-|a|^2)}{|z-a|^2} d\theta$.
- 3. Find the coefficient of z^7 in the expansion of tanz as a Taylor's series.
- 4. Prove that $\Gamma(n) = (n-1)!$.
- 5. Define order of an entire function. Give an example of an entire function of order 1.
- 6. Define Riemann zeta function and give a connection between $\zeta(s)$ and collection of prime numbers.
- 7. Prove that when zeta function is extended to the whole plane its only pole is a simple pole at s=1 with residue 1.
- 8. Let $\mathcal F$ be a normal family of functions in Ω with values in a metric space S. Prove that $\mathcal F$ is equicontinuous on every compact subset $E\subseteq\Omega$.
- 9. State and prove the Legendre's relation for the ζ function.

10. Prove that
$$rac{\wp'(z)}{\wp(z)-\wp(u)}=\zeta(z-u)+\zeta(z+u)-2\zeta(z).$$

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any six questions.

Weight 2 each.

11. Prove that if f(z) is analytic in a region Ω , then $\overline{f(\overline{z})}$ is analytic in $\Omega^* = \{\overline{z}; z \in \Omega\}$.

- 12. Prove that if V is subharmonic in a region Ω then the function V' defined as P_v in Δ and V outside of Δ is also subharmonic, where Δ is an open disk whose closure is contained in Ω .
- 13. State Mittag-Leffler's theorem. Prove that $\pi cot\pi z=rac{1}{z}+\sum_{n
 eq 0}(rac{1}{z-n}+rac{1}{n})$.
- 14. Prove that a necessary and sufficient condition for the absolute convergence of the product $\Pi_1^{\infty}(1+a_n)$ is the convergence of the series $\Sigma_1^{\infty}|a_n|$.
- 15. Find the sum of residues of the function $f(z) = \frac{(-z)^{s-1}}{e^z-1}$.
- 16. Define a normal family. Prove that a sequence of functions in \mathcal{F} converges uniformly to f on compact subsets of Ω if it converges to f with respect to the distace function ρ in \mathcal{F} .
- 17. Let Ω be a simply connected region other than the complex plane. Prove that the Riemann mapping from Ω to the unit disk is onto.
- 18. State and prove the boundary behavior theorem.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.

- 19. State Harnack's inequality and prove Harnack's Principle.
- 20. If f(z) is analytic in the annulus $R_1 < |z-a| < R_2$ and z is any point in the annulus, then prove that $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n + \sum_{n=1}^{\infty} b_n (z-a)^{-n}$ where $a_n = \frac{1}{2\pi i} \int_C \frac{f(z)dz}{(z-a)^{n+1}}$ and $b_n = \frac{1}{2\pi i} \int_C \frac{f(z)dz}{(z-a)^{-n+1}}$, C is the circle $|z-a| = R, R_1 < R < R_2$.
- 21. (i) Prove that the Zeta function has no zeros in the half plane $\sigma > 1$.
 - (ii) Describe the various types of zeros of the Zeta function.
- 22. (a) Prove that a discrete module consists either of zero alone, of the integral multiples $n\omega$ of a single complex number $\omega \neq 0$, or of all linear combinations $n_1\omega_1 + n_2\omega_2$, with non real ratio $\frac{\omega_2}{\omega_1}$ where n_1, n_2 are integers.
 - (b) Prove that any two bases of the period module are connected by a unimodular transformation.

(2×5=10 weightage)