

QP CODE: 23002641

Reg No

Name

M Sc DEGREE (CSS) EXAMINATION, MARCH 2023

Third Semester

Faculty of Science

CORE - ME010305 - OPTIMIZATION TECHNIQUE

M Sc MATHEMATICS, M Sc MATHEMATICS (SF) 2019 ADMISSION ONWARDS 13C064CA

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any eight questions. Weight 1 each.

- 1. Write short note about general problem of mathematical programming.
- 2. Write a short note on Applications of Duality.
- 3. Define general form of ILPP and MILPP.
- 4. Derive Gomory's fractional cut.
- 5. Define the following with suitable example.
 - (i) Graph
- (ii) Partial graph (iii) Centre of a graph
- 6. Explain the term maximum potential difference in a network.
- 7. Write short note on scheduling sequential activity.
- 8. Derive Taylor's series.
- 9. What you mean by perturbation?
- 10. Write down the Lagrange function and K-T conditions of NLP. MInimize f(x) subject to $h_j(x)=0; j=1,2,\ldots,m$ and $g_j(x)\geq 0;\ j=m+1,m+2,\ldots p$

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any six questions.

Weight 2 each.

- 11. What is mean by multiplier vector and simplex multipliers? Derive a formula for finding it.
- 12. Write the dual of the following LP problem and verify that the dual of the dual is primal. Maximize $f(X)=2x_1+3x_2+x_3$, subject to $4x_1+3x_2+x_3\geq 6, x_1+2x_2+5x_3\leq 4$ and $x_1,x_2,x_3\geq 0$.
- 13. Solve graphically, $minf(X)=4x_1+5x_2$ subject to $x_1+x_2\leq 2, 2x_1+3x_2\leq 6, x_1+2x_2\leq 4, x_1\geq 0, x_2\geq 0.$
- 14. Define 0-1 problem and hence Explain Selection problem and fixed charge problem using it.
- 15. What you mean by goal programming.

 A factory can manufacture two products A and B. The profit on a unit of A is Rs. 80 and of B is Rs. 40.

 The maximum demand of A is 6 units per week and B is 8 units per week. This manufacturer has set a goal of achieving a profit of Rs. 640 per week. Formulate the problem as goal programming and solve it.
- 16. State and prove maximum flow minimum cut theorem.
- 17. Express the function $x_1^2+x_2^2+x_3^2$ n the form $X^\prime QX$. Is it convex or not?
- 18. Minimize $f(X) = (x_1 2)^2 + (x_2 1)^2 \;\; {
 m subject} \; x_1 2x_2 1 = 0$

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any **two** questions.

Weight **5** each.

19. Solve the following LPP using simplex method

Maximize
$$f(X)=4x_1+5x_2$$
 Subject to $x_1-2x_2\leq 2, 2x_1+x_2\leq 6, x_1+2x_2\leq 5, -x_1+x_2\leq 2, x_1\geq 0, x_2\geq 0$

20. Solve using Branch and Bound method $Minf(X) = 5x_1 + 4x_2$ subject to $3x_1 + 2x_2 \ge 5, 2x_1 + 3x_2 \ge 7, x_1 \ge 0, x_2 \ge 0$ are non negative integers.

21. Find the minimum path from v_1 to v_8

Arc	(1,2)	(1,3)	(1,4)	(2,3)	(2,5)	(2,6)	(3,5)	(3,4)	(4,7)
Length	2	4	10	2	8	8	5	7	9
Arc	(5,6)	(5,8)	(6,3)	(6,4)	(6,7)	(6,8)	(4,6)	(7,3)	(7,8)
Length	2	13	5	2	8	12	0	1	1

22. Maximize the function $f(x)=-3x^2+21.6x+1.0$ with a minimum resolution of $\epsilon=0.5$ over 6 functional evaluations. The optimal value of f(x) is assumed to lie in the range $25 \geq x \geq 0$. (2×5=10 weightage)