

QP CODE: 23002801

M Sc DEGREE (CSS) EXAMINATION, MARCH 2023

Third Semester

Faculty of Science

CORE - CH500303 - SPECTROSCOPIC METHODS IN CHEMISTRY

M Sc CHEMISTRY, M Sc ANALYTICAL CHEMISTRY, M Sc APPLIED CHEMISTRY, M Sc POLYMER CHEMISTRY

2019 ADMISSION ONWARDS

D8F47E66

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any **eight** questions.

Weight **1** each.

- 1. What is cotton effect? Give its applications
- 2. Explain the terms primary and secondary mass effects in vibrational spectroscopy.
- 3. Explain the exceptionally low carbonyl stretching frequency in 2,4,6-cycloheptatrienone
- 4. Distinguish between chemical equivalence and magnetic equivalence in NMR.
- Write the theory of splitting in AB and ABC type molecules.
- 6. Compare the chemical shift values of homotopic, enantiotopic and diastereotopic protons.
- 7. What is 2D nmr? Write the theory of COSY spectra.
- 8. Explain the theory of MRI.
- 9. Briefly explain the principle and working of SIIMS, and FAB.
- 10. How will you identify the products in Pinacol-Pinacolone rearrangement using spectroscopic techniques?

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight **2** each.

11. Explain why a polar solvent shifts π - π * transition to a longer wavelength and n- π * transitions to shorter wavelength.

- 12. Explain briefly on the factors effecting the IR spectra
- Comment on different types of coupling constants in NMR.
- 14. Distinguish between double resonance and Off resonance in NMR
- 15. Deduce the structure of the molecules from the proton NMR data (a) $C_6H_{12}O_2$. 1HNMR data, δ 4.8(m), 2.2(t, J=7Hz), 1.6(m), 1.0(t, J=7Hz), 1.4(6H, d, J=7Hz) (b) $C_6H_{13}NO$. 1HNMR data, δ 2.6(6H, s), 2.3(1H, m), 1.1(6H, d, J=7Hz)
- 16. Explain the important features of fragmentation patterns of alcohols and phenols.
- 17. Ethyl butanoate in its mass spectrum shows two characteristic peaks due to odd electron ions at m/z = 88 and 60 and an abundant ion at m/z = 71. Explain the fragmentation.
- 18. The proton NMR spectrum of ethyl-2-butanoate (ethyl crotonate) shows the following signals at 6.95 (dq, J=16, 6.8 Hz, 1H), 5.81 (dq, J=16, 1.7 Hz, 1H), 4.13 (q, J=7 Hz, 2H), 1.88 (dd, J=6.8, 1.7 Hz, 3H) and 1.24 (t, J=7 Hz, 3H) ppm. Assign these values to various hydrogens and predict if the double bond is cis or trans substituted.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.

19. State and explain octant rule. Apply this rule and draw the octants for the following compounds and predict the sign of their optical activity.

- 20. What is chemical shift? Discuss the factors affecting chemical shift.
- 21. a) Explain Mc Lafferty rearrangement and discuss its application.
 - b) Write on Nitrogen rule in Mass spectrometry
 - c) Ethyl butanoate in its mass spectrum show two characteristic peaks due to odd electron ions at m/z = 88 and 60 and an abundant ion at m/z = 71. Explain the fragmentation.

22. (a) A compound with molecular formula $C_4H_8O_3$ gave the following spectral data. Deduce the structure.

IR: 1120, 1745 cm⁻¹

 $^1\text{H NMR: }\delta~4.05~(2\text{H, s}),\,3.8~(3\text{H, s})$ and 3.5~(3H, s)~ppm

(b) Acetone reacts with two molar equivalents of benzaldehyde in presence of KOH and ethanol. Propose a structure

for the product. The spectral data of the product are:

 ^{13}C NMR : δ 125, 128, 129, 130.5, 134.5, 144 and 185 ppm

DEPT 135 -NIL

DEPT 90 - δ 125, 128, 129, 130.5 and 144 ppm

DEPT 45- δ 125, 128, 129, 130.5 and 144 ppm

(2×5=10 weightage)