

Reg No :

M Sc DEGREE (CSS) EXAMINATION, MARCH 2023

Third Semester

Faculty of Science

CORE - ME010303 - MULTIVARIATE CALCULUS AND INTEGRAL TRANSFORMS

M Sc MATHEMATICS,M Sc MATHEMATICS (SF)
2019 ADMISSION ONWARDS
41917246

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any **eight** questions.

Weight **1** each.

- 1. Write the Fourier series generated by a function f of period 2π . Also give its exponential form as well as the formula for its coefficients
- 2. Define the inetgral transform of f. Also define the Exponential Fourier transform, Fourier Sine transform and Fourier Cosine transform.
- 3. Let u,v be two real valued functions defined on a subset S of complex plane, such that u,v are differentiable at an interior point $c \in S$. Then, show that, $f(z) f(c) = \{\nabla u(c) + i \nabla v(c)\}. (z-c) + o(||z-c||).$
- 4. Find the Jacobian matrix for the transformation given by the equation $f(x,y)=(e^{3x+y},xsiny).$
- 5. Show that the mean value theorem for functions from $\mathbf R$ to $\mathbf R$ does not hold for the function $\mathbf f: \mathbf R \to \mathbf R^2$ defined by the equation, $\mathbf f(t) = (cost, sint)$.
- 6. State and prove the relation connecting the Jacobian determinant of a complex valued function with its derivative.
- 7. Prove that the function $f: R^2 \to R$ defined by $f(x,y) = (y-x^2)(y-2x^2)$ does not have a local maximum or local minimum at (0,0)
- 8. Assume that the second order partial derivatives $D_{i,j}f$ exist in an n- ball B(a) and are continuous at a , where a is a stationary point of f. Let $Q(t)=\frac{1}{2}f''a;t)=\frac{1}{2}\sum_{i=1}^n\sum_{j=1}^nD_{i,j}f(a)t_it_j$ if Q(t)<0 for all $t\neq 0$, prove that f has a relative maximum at a.
- 9. Write the necessary and sufficient condition for invertibility of G'(a), $a \in E \subset \mathbb{R}^n$ where G is a primitive mapping.
- 10. Define k forms. Write standard presentation of $\omega = x_1 dx_2 \wedge dx_1 \wedge dx_3 x_2 dx_3 \wedge dx_2 \wedge dx_1$.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any six questions

Weight 2 each.

- 11. Prove that every real valued and continuous function on a compact interval can be uniformly approximated by a polynomial.
- 12. Prove the existance of convolution integral of f and g for every x in R, If $f \in L(R)$, $g \in L(R)$ and that either f or g is bounded on R. Moreover if the bounded function f or g is continuous on R. Then h is also continuous on R and $h \in L(R)$.
- 13. a. Show that if $f(x) = ||x||^2$ and $F(t) = f(\mathbf{c} + t\mathbf{u})$, then $F'(t) = 2\mathbf{c} \cdot \mathbf{u} + 2t||\mathbf{u}||^2$. b. Calculate all partial derivatives and directional derivatives of $f(\mathbf{x}) = \mathbf{a} \cdot \mathbf{x}$; $\mathbf{a} \in \mathbb{R}^n$ defined on \mathbf{R}^n .

- 14. a. Show that if $\mathbf{f}: S \to \mathbf{R}^m$ is differentiable at an interior point $\mathbf{c} \in S \subseteq \mathbf{R}^n$ then $\mathbf{f}'(\mathbf{c})(\mathbf{v}) = \sum_{k=1}^n v_k D_k \mathbf{f}(\mathbf{c})$, where $\mathbf{v} = (v_1, v_2, \dots v_n)$.

 b. Show that if f is real valued then $f'(\mathbf{c})(\mathbf{v}) = \nabla f(\mathbf{c}) \cdot \mathbf{v}$.
- 15. Assume that $f=(f_1,f_2,\ldots f_n)$ has continuous partial derivatives D_jf_i on an open set S in R^n , and that the Jacobian determinant $J_f(a)\neq 0$ for some point a in S. Prove that there is an n-ball B(a) on which f is one-one.
- 16. State inverse function theorem and implicit function theorem .
- 17. Define k cell I^k in R^k . Prove that $\int_{I^k} f$ is independent of the order in which the k integrations are carried out.
- 18. Let γ be a 1-surface in R^3 with parameter domain [0,1] and $\omega=xdy+ydx$. Then prove that $\int_{\gamma}\omega$ depends only on the endpoint of the curve γ

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any **two** questions.

Weight **5** each.

- 19. If $\mathcal{F}(f)$ denotes the Fourier Transform of f, then prove that $\mathcal{F}(f*g)=\mathcal{F}(f)$. $\mathcal{F}(g)$
- 20. Show that the composition of two differentiable functions is again differentiable. Also express total derivative of the composite function in terms of total derivatives of individual functions.
- 21. State and prove the sufficient condition for the equality of mixed partial derivatives for a function f at the point c
- 22. Suppose F is a C' mapping of an open set $E \subset R^n$ into R^n , $0 \in E$, F(0) = 0 and F'(0) is invertible. Then prove that F can be represented locally as a composition of primitive mappings and flips.

 (2×5=10 weightage)