

QP CODE: 23002800

Reg No :

Name :

M Sc DEGREE (CSS) EXAMINATION, MARCH 2023

Third Semester

Faculty of Science
M Sc CHEMISTRY

CORE - CH010301 - CHEMICAL KINETICS, SURFACE CHEMISTRY AND CRYSTALLOGRAPHY

2019 ADMISSION ONWARDS F582DD95

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any **eight** questions.

Weight **1** each.

- 1. What are the assumptions of collision theory?
- 2. What is free energy of activation ΔG^{\ddagger} ? Give its significance with respect to deciding the rate of the reaction.
- 3. How does Hinshelwood treatment of unimolecular reactions differ from Lindemann theory?
- 4. For a reaction in solution, how does the dielectric constant and ionic strength affect the reaction rate?
- 5. Give the principle of SERS in surface studies.
- 6. Write the Langmuir adsorption isotherm equation and explain the terms.
- 7. Write a note on flash desorption.
- 8. Write a short note about sedimentation potential.
- 9. Explain Miller indices of a crystal?
- 10. What are liquid crystals? List their characteristics.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight **2** each.

- 11. Discuss on the kinetics of anionic polymerization.
- 12. What are the different types of acid-base catalysis? Define each type with an example.
- 13. Derive Gibbs adsorption equation.
- 14. What is surface pressure and surface potential? Explain how are their measurements done and discuss their interpretation.
- 15. What are the important applications of SEM and TEM in the study of surfaces.
- 16. What are the important crystal growth techniques?
- 17. Calculate the specific rate k at 500°C for the reaction 2HI \rightarrow H₂ + I₂. Given that activation energy is 40000 cals and collision diameter is 2.5 x 10⁻¹⁰ cm.
- 18. At 25^{0} C and 1 atm pressure, a volume of 250 ml of H_{2} was required to form a monolayer on an adsorbant. Calculate the surface area of the solid given that the area occupied by one molecule of H_{2} is 0.11 nm²

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any **two** questions.

Weight 5 each.

- 19. Discuss the relaxation method of studying fast reactions by deducing an expression for the relaxation time of a reaction which is first order in both directions.
- 20. Write short notes on the following mechanisms of oscillating reactions:
 - a) Lotka-Volterra mechanism b) the brusselator mechanism
- 21. Explain the various methods used for the determination of molecular weight of macromolecules.
- 22. Explain in detail the different techniques for characterizing a crystal structure.

(2×5=10 weightage)