

QP CODE: 23105589

Reg No

Name

B.Sc DEGREE (CBCS) REGULAR / REAPPEARANCE EXAMINATIONS, MARCH 2023 Sixth Semester

CORE COURSE - MM6CRT03 - COMPLEX ANALYSIS

Common for B.Sc Mathematics Model I & B.Sc Mathematics Model II Computer Science 2017 Admission Onwards

5C47794D

Time: 3 Hours

Max. Marks: 80

Part A

Answer any ten questions.

Each question carries 2 marks.

- 1. Check whether the function $f(z)=xy^2+i(2x-y)$ is continuous at the origin
- 2. Verify the analiticity of f(z)=sinz using CR Equations.
- 3. Given $U(x,y)=\ln (x^2-y^2)$. Verify whether U is harmonic or not
- Find iⁱ and its principal value
- 5. Find all the complex roots of the equation $\cos z=3$
- 6. Show that If m and n are integers, $\int_0^{2\pi}e^{im\theta}e^{-in\theta}d\theta=\left\{egin{array}{l} 0; \ ext{when } m
 eq n \ 2\pi; \ ext{when } m=n \ \end{array}
 ight.$
- 7. Evaluate $\int_{|z|<2} rac{ze^z}{(z^2+9)^5} dz$
- 8. State Liouville's theorem
- Derive the Maclaurin series expansion for f(z)=cosz, using the definition of $cosz=rac{e^{iz}+e^{-iz}}{2}$
- 10. Use Laurent series expansion to show that $\int_C e^{\frac{1}{z}} dz = 2\pi i$ where C is any positively oriented simple closed contour around origin.

- 11. Is z=0, a pole of $f(z)=rac{1}{z^2(z+1)}$? If so find its order?
- Define the improper integral over $-\infty < x < \infty$ and its Cauchy Principal Value.

 $(10 \times 2 = 20)$

Part B

Answer any **six** questions.

Each question carries **5** marks.

- 13. Let f(z)=U+iV where U and V are functions of x and y z_0 =x $_0$ +iy $_0$ and w $_0$ =U $_0$ +iV $_0$. Then $\lim_{z\to z_0} f(z) = w_0$ iff $\lim_{(xy)\to (x_0y_0)} U(x,y) = U_0$ and $\lim_{(xy)\to (x_0y_0)} V(x,y) = V_0$
- 14. Verify CR Equations for the function $f(z) = (z^2 2) e^{-x} (\cos y i \sin y)$
- 15. Prove that $|\exp(-2z)|<1$ if and only if Re(z)>0
- 16. Evaluate $\int_C rac{z+2}{z} dz$, where C is the semicircle $z=2e^{i\theta}, \ \ (\pi \leq \theta \leq 2\pi).$
- 17. Let C be the arc of the circle |z|=2 from z=2 to z=2i that lies in the first quadrant. Then without evaluating the integral show that $\left|\int_C \frac{z+4}{z^3-1} dz\right| \leq \frac{6\pi}{7}$.
- 18. State and prove Cauchy's inequality.
- 19. Assuming a series expansion of $e^z,$ show that $z \cosh z^2 = \sum_{n=0}^{\infty} rac{z^{4n+1}}{(2n)!} dz, \mid z \mid < \infty$
- 20. Using residues, evaluate $\int_C z^2 sin(\frac{1}{z})dz$ where C is the unit circle about the origin.
- 21. State Cauchy's Residue Theorem. Using the theorem, evaluate $\int_C \frac{e^{-z}}{z^2} dz$, where C is the circle |z|=3.

 $(6 \times 5 = 30)$

Part C

Answer any **two** questions.

Each question carries **15** marks.

22. Prove that 1)
$$\sin^{-1}z=-i[\log\ iz+(1-z^2)^{\frac{1}{2}}]$$
 .Hence deduce $\tan^{-1}z$ 2) Evaluate $\tan^{-1}(1+i)$

- 23.
- State and prove Cauchy's Integral Formula.
- ullet Find the value of $\int_C rac{1}{\left(z^2+4
 ight)^2} dz$, where C is the circle |z-i|=2 in the positive sense.
- 24. a) State and prove a necessary and sufficient condition for convergence of sequence $z_n=x_n+iy_n$ of complex numbers.
 - b) Using this derive a necessary and sufficient condition for convergence of series $_{\infty}$

$$\sum_{n=1}^{\infty} z_n$$
 of complex numbers, where $z_n = x_n + i y_n$.

- c) Prove that if a series of complex numbers converges, then the n^{th} term converges to zero, as n tends to infinity.
- State and prove a necessary and sufficient condition for an isolated singular point z_0 of a function f(z) to be a pole of order m. Derive the formula for residue at z_0 of f(z). Find the residue at z=i of $f(z)=\frac{(Logz)^3}{z^2+1}$.

 $(2 \times 15 = 30)$