

B.Sc DEGREE (CBCS) REGULAR / REAPPEARANCE EXAMINATIONS, MARCH 2023

Sixth Semester

CORE COURSE - MM6CRT04 - LINEAR ALGEBRA

Common for B.Sc Mathematics Model I & B.Sc Mathematics Model II Computer Science 2017 Admission Onwards

A2ADAE33

Time: 3 Hours

Max. Marks: 80

Part A

Answer any **ten** questions. Each question carries **2** marks.

- 1. Prove that if the rows x1,x2,....,xp are linearly independent, then none can be zero
- 2. Prove that every square matrix is equivalent to its transpose.
- 3. Define linearly dependent subset of a vector space V. Prove that { (1,1,0), (2,5,3), (0,1,1)} of R³ is linearly dependent.
- 4. Check whether $\{(1,1,2), (1,2,5), (5,3,4)\}$ is a basis of \mathbb{R}^3 .
- 5. Define dimension of a vector space V and Find the dimension of R_n [X]
- 6. If $f:\mathbb{R}^2 o\mathbb{R}^2$ is given by f(a,b)=(b,0), prove that $Im\ f=Ker\ f.$
- 7. Define matrix of f relative to fixed ordered bases of vector spaces V and W where $f:V \to W$ is linear.
- Determine the transition matrix from the ordered basis $\{(1,-1,1),(1,-2,2),(1,-2,1)\}$ of \mathbb{R}^3 to the natural ordered basis of \mathbb{R}^3 .
- Define a nilpotent linear mapping f on a vector space V of dimension n over a field F. What is meant by index of nilpotency of f.
- 10. Find the characteristic polinomial of $\begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}$

- 11. Define the eigen space and geometric multiplicity associated with the eigen value.
- 12. Define eigen value of a linear map and the eigen vector associated with it.

 $(10 \times 2 = 20)$

Part B

Answer any six questions.

Each question carries 5 marks.

a)Prove that every square matrix can be expressed uniquely as the sum of a symmetric matrix and a skew symmetric matrix

b)If
$$A = \begin{bmatrix} cos\theta & sin\theta \\ -sin\theta & cos\theta \end{bmatrix}$$
 Prove that An = $\begin{bmatrix} cosn\theta & sinn\theta \\ -sinn\theta & cosn\theta \end{bmatrix}$

- a) If A and B are orthogonal nxn matrices prove that AB is orthogonal.
 - b) Prove that a real 2x2 matrix is orthogonal if and only if it is of one of the forms

$$\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$
, $\begin{bmatrix} a & b \\ b & -a \end{bmatrix}$ Where $a^2 + b^2 = 1$.

- 15. Prove that the set Rn of n tuples (x1,x2...xn) of real numbers is a real vector space.
- 16. Determine which of the following subsets are subspace of a vector space R ⁴

a)
$$\{(x, y, z, t) : x = 1\}$$

b)
$$\{(x, y, z, t) | x = y, z = t\}$$

- 17. Define linear mapping from a vector space to a vector space. Check whether $ar f:\mathbb R^3 o\mathbb R^3$ given by f(x,y,z)=(z,-y,x) is linear.
- 18. a) Prove that the linear mapping $f: \mathbb{R}^2 \to \mathbb{R}^3$ given by $f(x,y) = (y,\ 0,\ x)$ is injective but not surjective.
 - b) If f:V o W is linear, then prove that the following statements are equivalent: (i) f is injective (ii) $Ker\ f=\{0\}.$
- 19. a) Define rank and nullity of a linear mapping. Find the rank and nullity of $pr_1:\mathbb{R}^3 o\mathbb{R}$ defined by $pr_1(x,y,z)=x.$
 - b) Let V and W be vector spaces each of dimension n over a field F. If $f:V\to W$ is linear, then prove that f is injective if and only if f is bijective.
- 20. For the matrix A = $\begin{bmatrix} -2 & 5 & 7 \\ 1 & 0 & -1 \\ -1 & 1 & 2 \end{bmatrix}$ find a matrix P such that P⁻¹ A P is diagonal.

21. For the nXn tridiagonal matrix An =
$$\begin{bmatrix} 2 & 1 & 0 & 0 & \dots & 0 & 0 \\ 1 & 2 & 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 2 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 2 & 1 \\ 0 & 0 & 0 & 0 & \dots & 1 & 2 \end{bmatrix}$$
 Prove that det

An=n+1.

 $(6 \times 5 = 30)$

Part C

Answer any two questions.

Each question carries 15 marks.

22. a) Reduce the following matrix to row echelon form
$$\begin{bmatrix} 1 & 2 & 0 & 3 & 1 \\ 1 & 2 & 3 & 3 & 3 \\ 1 & 0 & 1 & 1 & 3 \\ 1 & 1 & 2 & 1 \end{bmatrix}$$

- b) Prove that by using elementary row operation, a non-zero matrix can be transformed to a row-echelon matrix.
- c) Prove that every non-zero matrix A can be transformed to a Hermite matrix by using elementary row operations.

23. a) Show that the matrix
$$\begin{bmatrix} 1 & 3 & 4 & 7 \\ 2 & 3 & 5 & 8 \\ 1 & 4 & 5 & 9 \end{bmatrix}$$
 has neither a left inverse nor a right inverse.

- b)Define an invertible matrix. Prove that if A and B are invertible matrix, then $(AB)^{-1} = B^{-1}A^{-1}$.
- c) Prove that the real 2x2 matrix A= $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible if and only if ad bc ± 0 , in which case ,find its inverse.
- d) If A_1, A_2, \dots, A_P are invertible nxn matrices. Prove that the product A_1, A_2, \dots, A_P is invertible and that $(A_1, A_2, \dots, A_P)^{-1} = A_P^{-1} \dots A_2^{-1} A_1^{-1}$
- 24. a) Let V and W be vector spaces over a field F. If $\{v_1,v_2,\ldots,v_n\}$ is a basis of V and $w_1,w_2,\ldots w_n$ are elements of W (not necessarily distinct) then prove that there is a unique linear mapping $f:V\to W$ such that $(i=1,2,\ldots,n)$ $f(v_i)=w_i$. b) Prove that a linear mapping is completely and uniquely determined by its action on a

basis.

- c) Prove that two linear mappings f,g:V o W are equal if and only if they agree on any basis of V.
- 25. a) Define similar matrices and state whether similar matrices have the same rank. Show that if matrices A,B are similar then so are A^\prime,B^\prime .
 - b) Prove that for every $artheta\in\mathbb{R},$ the complex matrices $egin{bmatrix} \cosartheta & -sinartheta \ sinartheta & cosartheta \end{bmatrix},$

$$\left[egin{array}{cc} e^{i artheta} & 0 \ 0 & e^{-i artheta} \end{array}
ight]$$
 are similar.

c) Prove that the relation of being similar is an equivalence relation on the set of $n \times n$ matrices.

 $(2 \times 15 = 30)$