

QP CODE: 23003109

Reg No :

Name :

M Sc DEGREE (CSS) EXAMINATION, APRIL 2023

First Semester

CORE - ME010101 - ABSTRACT ALGEBRA

M Sc MATHEMATICS, M Sc MATHEMATICS (SF)
2019 ADMISSION ONWARDS
5053C2A9

Time: 3 Hours Weightage: 30

Part A (Short Answer Questions)

Answer any **eight** questions.

Weight **1** each.

- 1. Find all abelian groups upto isomorphism of order 360.
- 2. Let X be a G set. Define an orbit in X under G.
- 3. Define torsion coefficients of a finite abelian group. Find the torsion coefficients of $\mathbb{Z}_6 \times \mathbb{Z}_{12} \times \mathbb{Z}_{20}$
- 4. Find the kernel of the homomorphism $\phi: \mathbb{Z}_{18} \to \mathbb{Z}_{12}$, where $\phi(1) = 10$
- 5. Prove that every group of prime-power order is solvable.
- 6. Prove that no group of order 20 is simple
- 7. Compute the evaluation homomorphism $\phi_2(x^2+3)$, $F=E=\mathbb{C}$
- 8. Find the sum and product of the polynomials $f(x) = 2x^2 + 3x + 4$ and $g(x) = 3x^2 + 2x + 3$ in $\mathbb{Z}_6[x]$
- 9. Define ring of endomorphisms.
- 10. Is $\mathbb{Q}[x]/(x^2-5x+6)$ a field? Why?

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight **2** each.

- 11. Let H be a normal subgroup of a group G . Prove that the cosets of H form a group $^{G/H}$ under the binary operation (aH)(bH) = (ab)H
- 12. Let X be a G set. When we say that G acts faithfully on X? Show that G acts faithfully on X if and only if no two distinct elements of G have the same action on each element of X.
- 13. Prove that any two Sylow p-subgroups of a finite group are conjugate.
- 14. If H and K are finite subgroups of a group G, then prove that $|HK| = \frac{(|H|) (|K|)}{|H \cap K|}$.
- 15. Let D be a given integral domain and let S be the subset of D x D given by $S=\{(a,b)/a,b \in D, b\neq 0\}$. Two elements $(a,b) \sim (c,d)$ in S if and only if ad=bc. Show that \sim is an equivlence relation.
- 16 State and prove the Eisenstein criterion for irreducibility.
- 17. Show that \mathbb{Z}_2G is a group algebra where G is the group $\{e,a\}$
- 18. Prove that a field contains no proper non trivial ideals.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any **two** questions.

Weight **5** each.

- 19. (a) Prove that a direct product of a finite number of abelian groups forms an abelian group.
 - (b) Prove that the group $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic and isomorphic to \mathbb{Z}_{mn} if and only if \gcd of m and n is 1.
- 20. (a) State and prove Cauchy's theorem.
 - (b) Let G be a finite group. Prove that G is a p-group if and only if |G| is a power of p.
- 21. State and prove Fermat's little theorem. Find the remainder of 7^{1000} when divided by 24

22. (a) Let $\phi:R\to R'$ be a ring homomorphism with kernel H. Then show that the additive cosets of H form a ring R/H. Also prove

that the map $\,\mu:R/H o\phi[R]$ defined by $\,\mu(a+H)=\phi(a)$ is an isomorphism.

(b) Prove that for a subring H of R, the multiplication of additive cosets of H is well defined by the equation (a+H)(b+H)=ab+H

if and only if $ah \in H$ and $hb \in H$ for all $a,b \in R$ and $h \in H$.

(2×5=10 weightage)