

QP CODE: 23003110

Reg No :

M Sc DEGREE (CSS) EXAMINATION, APRIL 2023

First Semester

CORE - ME010102 - LINEAR ALGEBRA

M Sc MATHEMATICS, M Sc MATHEMATICS (SF)
2019 ADMISSION ONWARDS
798F2CA1

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any eight questions.

Weight 1 each.

- 1. Define vector space. Is $\mathbb C$ a vector space over $\mathbb R$?
- 2. Let V be a vector space over a subfield F of the complex numbers. Suppose α , β , and γ are linearly independent vectors in V. Prove that $(\alpha + \beta)$, $(\beta + \gamma)$, and $(\gamma + \alpha)$ are linearly independent.
- 3. Find T^2 where $T:R^2 o R^2$ is a linear operator defined as $T(x_1,x_2)=(x_2,x_1)$.
- 4. Show that the space C of complex numbers and $\,R^2$ are isomorphic, considering as vector spaces over R.
- 5. If $T:C^2\to C^2$ is a linear operator defined as $T(x_1,x_2)=(x_1,0)$, find the matrix of T in the standard ordered basis for C^2 .
- 6. Define commutative ring. Give examples for commutative and non-commutatve rings.
- 7. If K is a commutative ring with identity and A is the matrix over K given by $A = \begin{bmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{bmatrix}$ then find det A.
- 8. Show that if two matrices are similar, then their determinants are the same.
- 9. Prove that similar matrices have the same characteristic values
- 10. Find a 3 imes 3 matrix for which the minimal polynomial is x^2 .

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any six questions. Weight 2 each.

- 11. Let V be the vector space of all 2×2 matrices over the field \mathbb{C} of complex numbers. Let W_1 be the subset of V consisting of all matrices of the form $\begin{bmatrix} x & y \\ z & 0 \end{bmatrix}$ and let W₂ be the subset of V consisting of all matrices of the form $\begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix}$
 - (i) Prove that W₁ and W₂ are subspaces of V.
 - (ii) Show that $W_1 + W_2 = V$.
 - (iii) Find $W_1 \cap W_2$. Is it a subspace? If so, find its dimension.
- 12. Show that the vectors $\alpha_1=(\cos\theta,\sin\theta)$, $\alpha_2=(-\sin\theta,\cos\theta)$ form a basis for \mathbb{R}^2 . Find the coordinates of each of the standard basis vectors in the ordered basis $\{\alpha_1, \alpha_2\}$.
- 13. If W₁ and W₂ are sub spaces of a finite dimensional vector space V then prove that
 - $\begin{array}{l} \text{(i)} \ \ W_1 \subset W_2 \Rightarrow W_2^0 \subset W_1^0 \\ \text{(ii)} \ (W_1 + W_2)^0 = W_1^0 \cap W_2^0 \end{array}$
- 14. Let V be a vector space of any dimension over the field F. Prove that every hyper space in V is the null space of a non-zero linear functional on V.
- 15. Let V and W be vector spaces over the field F and T:V o W is a linear transformation. Prove that null space of T^t is the annihilator of the range of T.
- 16. Let n > 1 and let D be an alternating (n-1)-linear function on $(n-1) \times (n-1)$ matrices over K. For each j, $1 \le j \le n$, show that the

 $\mathrm{Ej}(\mathrm{A}) = \sum_{i=1}^{n} (-1)^{i+j} A_{ij} D_{ij}(\mathrm{A})$ is an alternating n-linear function on n x n matrices A. function E; defined by

17. Let T be a linear operator on \mathbb{R}^4 which is represented in the standard ordered basis by the matrix

 $A=egin{bmatrix} 0&0&0&0\ a&0&0&0\ 0&b&0&0 \end{bmatrix}$. Under what conditions on a, b and c, T is diagonalizable.

18. Let V be a finite dimensional vector space and let W_1,\cdots,W_k be subspaces of V such that $V=W_1+\cdots+W_k$ and $\dim W_1 + \dim W_2 + \cdots + \dim W_k = \dim V$ Prove that $V = W_1 \oplus \cdots \oplus W_k$

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any **two** questions.

Weight **5** each.

- 19. (a) Show that row-equivalent matrices have the same row space.(b) Let R be a non-zero row-reduced echelon matrix. Then prove that the non-zero row vectors of R form a basis for the row space of R.
- 20. a) If A is an $n \times n$ matrix with entries in the field F. Then prove that the row rank and column rank of A are equal.
 - b) Determine the row rank of the Matrix A, by finding a basis for its row space, where

$$A = \begin{bmatrix} 1 & 0 & -2 \\ 2 & 2 & 0 \\ 2 & 0 & -4 \\ 1 & 1 & 3 \end{bmatrix}$$

- 21. (a) If D is any alternating n-linear function on K^{nxn} , then prove that for each n x n matrix A, D(A)=(det A)D(I).
 - (b) If A and B are two n x n matrices over K, then show that det (AB) = (det A) (det B).
- 22.
- 1. Let V be a finite dimensional vector space over the field F and let T be a linear operator on V. Prove that T is diagonalizable if and only if the minimal polynomial for T has the form $p=(x-c_1)(x-c_2)\cdots(x-c_k)$ where c_1,c_2,\cdots,c_k are distinct elements of F.
- 2. Every matrix A such that $A^2=A$ is similar to a diagonal matrix

(2×5=10 weightage)