QP CODE: 23003255 Reg No : Name # M Sc DEGREE (CSS) EXAMINATION, APRIL 2023 ## **First Semester** ## CORE - CH500103 - QUANTUM CHEMISTRY AND GROUP THEORY M Sc CHEMISTRY, M Sc ANALYTICAL CHEMISTRY, M Sc APPLIED CHEMISTRY , M Sc POLYMER CHEMISTRY ### 2019 ADMISSION ONWARDS ## 07EAB500 Time: 3 Hours Weightage: 30 ## Part A (Short Answer Questions) Answer any **eight** questions. Weight **1** each. - 1. "A molecule may have S_n axis even if C_n and σ_h does not exist independently" Do you agree with the statement? Why? - 2. State the standard reduction formula. - 3. What do you mean by space groups? - 4. What are cyclic groups? Explain using an example. - 5. What is meant by the term "class" in group theory? Explain using an example. - 6. Highlight the significance of recursion relation. - 7. Find the commutator of angular momentum operator $[L_v, L^2]$. - 8. What are Ladder operators? Explain. - 9. What are radial and angular plots? Explain. - 10. What are spin orbitals? Explain. (8×1=8 weightage) #### Part B (Short Essay/Problems) Answer any **six** questions. Weight **2** each. 11. Explain the different point groups present in linear molecules. - 12. Deduce the matrix representation for C_n and S_n. - 13. What is block diagonalisation? How is it helpful? - 14. Write a note on transformation properties of atomic orbitals. - 15. Light of wavelength 4360 A⁰ caused photoelectric emission of electrons whose kinetic energy is measured as 0.45 eV. Calculate the threshold frequency needed for photo-electric emission of electrons. - 16. Which of the following functions are eigenfunctions of d^2/dx^2 (a) e^{x^2} , (b) x^2 , (c) $\sin x$, (d) $3\cos x$, (e) $\sin x + \cos x$. Give the eigenvalue for each eigenfunction. - 17. Discuss the significance of spherical harmonics. Give an example of the real form of spherical harmonics. - 18. Explain symmetric and antisymmetric wave functions with suitable examples. (6×2=12 weightage) ## Part C (Essay Type Questions) Answer any **two** questions. Weight **5** each. - 19. Construct the Character Table of C_{2v} point group using GOT rules. - 20. Construct SALCs for trans N₂F₂ molecule. - 21. A particle of mass 'm' is confined to move in one dimension between x=0 and x=a. The potential energy is zero between x=0 and x=a and infinity when x<0 and when x>0. Write the time independent schrodinger wave equation and obtain the eigen function and eigen value. - 22. Derive the expression for normalized wave function for a particle in a 3D box with sides of length a,b and c and discuss the degeneracies of the first three energy levels. (2×5=10 weightage)