

QP CODE: 23003111

Name :

Reg No

M Sc DEGREE (CSS) EXAMINATION, APRIL 2023

First Semester

CORE - ME010103 - BASIC TOPOLOGY

M Sc MATHEMATICS,M Sc MATHEMATICS (SF)
2019 ADMISSION ONWARDS
C9D4CE4C

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any **eight** questions.

Weight **1** each.

- 1. Show that every open ball is an open set in a metric space
- 2. Define convergence of sequences in a topological space. Discuss the convergence of sequence in an indiscrete space
- 3. Define Product topology in finite case
- 4. Define neighborhood, interior and interior point.
- 5 Define homeomorphism from a space X to a space Y.
- 6 Define quotient topology and quotient space.
- 7. Let A be a Lindeloff subset of a space X. Prove that $(A, au_{|A})$ is Lindeloff.
- 8. Prove that compactness is a weakly hereditary property.
- 9. Define a path in topological space and hence define a path connected space.
- 10 Give an example of a Hausdorff space which is not regular.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight **2** each.

11. Show that on a finite set containing n elements there are atmost $2^{2^{n-2}}$ distinct topologies and obtain a sharper upper bound for the number of topologies on the same set

- 12. Show that second countability is a hereditary property
- 13. Let the function $f: X \to Y$ is $\mathfrak{I} \mathcal{U}$ continuous, where $\mathfrak{I}, \mathcal{U}$ be topologies on X, Y respectively. Then show that for any closed subset A of Y, $f^{-1}(A)$ is closed in X if and only if for all $A \subseteq X$, $f(\bar{A}) \subseteq \overline{f(A)}$.
- 14. Let X have the weak topology determined by a family $\{f_i: X \to Y_i / i \in I\}$ of functions where each Y_i is a topological space, I be an index set. Then show that for any space Z, a function $g: Z \to X$ is continuous if and only if for each $i \in I$, the composite $f_i \circ g: Z \to Y_i$ is continuous.
- 15. Prove that continuous image of a connected space is connected.
- 16. Let C is a connected subset of a space X and D is any set such that $C\subset D\subset \overline{C}$. Prove that D is connected.
- Show that comb space is connected but not locally connected
- 18. Suppose y be an accumulation point of a set A in a T_1 space . Show that every neighbourhood of y contains infinitely many points of A

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any **two** questions.

Weight **5** each.

- 19. Prove the three equivalent conditions for a base of a topological space
- 20. Let X be a set, $\theta: P(X) \to P(X)$ a function such that (i) θ is an expansive operator (ii) ϕ is a fixed point of θ (iii) θ is idempotent (iv) θ commutes with finite unions. Then Show that there exist a unique topology $\mathfrak I$ on X such that θ coincides with the closure operator associated with $\mathfrak I$. Conversely prove that every closure operator satisfies these properties (i) to (iv).
- (a) Prove that the property of being a Lindeloff space is preserved under continuous functions.
 (b) Prove that every continuous real valued function on a compact space is bounded and attains its extrema.
- 22. Explain equivalent conditions of regular space

(2×5=10 weightage)

Daga 2/2