

QP CODE: 23003112

Reg No :

M Sc DEGREE (CSS) EXAMINATION, APRIL 2023

First Semester

CORE - ME010104 - REAL ANALYSIS

M Sc MATHEMATICS,M Sc MATHEMATICS (SF)
2019 ADMISSION ONWARDS
932638F8

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any eight questions.

Weight 1 each.

- 1. Define total variation. Prove that $0 \leq V_f < \infty$ and $V_f = 0$ if and only if f is a constant on [a,b].
- 2. Let f and g be complex valued functions defined as follows : $f(t) = e^{2\pi i t}$ if $t \in [0,1]$ and $g(t) = e^{4\pi i t}$ if $t \in [0,1]$. Then prove that the length of g is twice that of f.
- 3. Define a partition P of [a, b] and a refinement of P. Also define common refinement.
- 4. If $f \in \mathcal{R}$ (a) on [a,b] then prove that $cf \in \mathcal{R}$ (a) for every constant c. Also show that $\int_a^b cf d\alpha = c \int_a^b f d\alpha$.
- 5. State the fundamental theorem of calculus.
- 6. Let $S_{m,n}=rac{m}{m+n}; m,n=1,2,3,\ldots$. Show that the limit process cannot be interchanged.
- 7. Define uniform convergence of sequence of functions..
- 8. Every convergent sequence is a Cauchy sequence. What about the converse?
- 9. Prove that every member of an equicontinuous family of functions is uniformly continuous.
- 10. Define the exponential function E(z) and prove the addition formula.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any six questions.

Weight 2 each.

11. Show using an example that boundedness of f' is not necessary for f to be of bounded variation.

- 12. Prove using an example that there exists functions with same graph which are not equivalent.
- 13. Prove that all continuous functions on [a, b] are Riemann Stieltjes integrable.
- 14. Suppose φ is a strictly increasing continuous function that maps an interval [A,B] onto [a,b]. Suppose α is monotonically increasing on [a,b] and $f \in \mathcal{R}$ (α) on [a,b]. Define β and g on [A,B] by $\beta(y) = \alpha(\varphi(y))$, $g(y) = f(\varphi(y))$. Then prove that $g \in \mathcal{R}$ (β) and $\int_A^B g d\beta = \int_a^b f d\alpha$.
- 15. Show that $\mathscr{C}(X)$, the set of all complex valued continuous functions defined on a compact metric space X, is a complete metric space under the metric induced by the supremum norm.
- 16. Let lpha be monotonically increasing on [a,b]. Suppose $f_n\in\mathscr{R}(lpha)$ on [a,b], for $n=1,2,3,\ldots$ and suppose $f_n o f$ uniformly on [a,b]. Then prove that $f\in\mathscr{R}(lpha)$ on [a,b].
- 17. Prove that there exits a convergent subsequence for a pointwise bounded sequence of complex functions defined on a countable set.
- 18. State and prove the theorem concerning an inversion in the order of summation of a double sequence.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.

- 19. (i) State and prove additive property of total variation.
 - (ii) Let f be continuous on [a, b]. Then prove that f is of bounded variation on [a, b] if an only if , f can be expressed as the difference of two increasing continuous functions.
- 20. Establish a necessary and sufficient condition for a real bounded function f to be Riemann Stieltjes integrable w.r.t an increasing function α over [a,b].
- 21. Construct a continuos function from $\phi(x)=|x| \ (-1\leq x\leq 1)$, on the real line which is nowhere differentiable.
- 22. If f is a continuous complex function on $[a,\,b]$, prove that there exists a sequence of polynomials P_n such that $\lim_{n\to\infty}P_n(x)=f(x)$ uniformly on $[a,\,b]$.

(2×5=10 weightage)