Theoretical investigation of the non-linear optical characteristics of 2 - (4-fluorophenyl) – 1 - phenyl - 1H - benzimidazole and 1- phenyl - 2- p- tolyl - 1H - benzimidazole

ANEETTA THOMAS

Department of chemistry Pavanatma college Murickassery

ABSTRACT

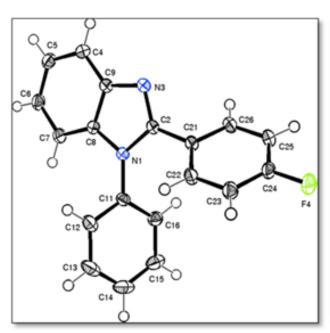
Two benzimidazole derivatives, 2- (4-fluorophenyl)-1-phenyl-1H-benzimidazole (C19H13FN2) (FPBENZ) and 1- phenyl - 2- p-tolyl-1H-benzimidazole (C20H16N2) (TPBENZ), were the subject of a theoretical investigation. Data from the study were recorded and processed using the Gaussian03 programme. 6-31G basis sets have been used in DFT/B3LYP computations to examine the vibrational frequencies and geometrical characteristics. In the current work, the first order hyperpolarisability and dipole moment values of the title compounds are reported using ¹HNMR, FTIR, and the topologies from HOMO-LUMO analyses. First order hyperpolarisability, dipole moment values, and topologies from HOMO-LUMO analyses all suggest that the aforementioned compounds might function as effective NLO materials.

Key words: IR, Raman, DFT, Hyperpolarizbility, NLO activity, Benzimidazoles

INTRODUCTION

Due to their characteristic linear and non-linear optical properties and also due to their thermal stability in guest-host systems, chromophores based on benzoimidazoles have drawn more and more interest. The covalent insertion of the NLO chromophores into polyamides, which results in NLO side chain polymers, is made possible by the imidazole ring's simple ability to be modified to accommodate functional groups. The majority of - conjugated systems have a significant impact on the second-order NLO response. The NLO is active in benzimidazoles $^{[1]}$. We chose two benzimidazoles, 2- (4-fluorophenyl)- 1- phenyl-1H- benzimidazole ($C_{19}H_{13}FN_2$) (FPBENZ) and 1-phenyl-2-p-tolyl-1H- benzimidazole ($C_{20}H_{16}N_2$),

all of which include electron-donating groups (TPBENZ) For the aforementioned compounds, computational studies were done to explore the potential for application as NLO active components. As far as we know, there is no literature on the examination of chemical structures using FTIR, FTNMR, and quantum mechanical techniques such dipole moment, first order hyperpolarisability, highest occupied molecular orbital (LUMO), and natural bond analysis. Quantum mechanical computational techniques can be used to perform spectral activities. The wavenumbers of the title compound of FT-IR, FT-Raman, and theoretical calculations are provided in the current work.


COMPUTATIONAL DETAILS

The chemical structure and vibrational frequencies of the molecule in the title were calculated using the Gaussian03 software programme utilising the B3LYP/6-31G basis sets. Scaling factors must be utilised to achieve a significantly better agreement with experimental data because the DFT

hybrid B3LYP functional technique has a tendency to overestimate the basic modes. The Gaussview program's animation option, which provides a visual representation of the vibrational modes, aids with the assignment of the calculated wavenumbers.

RESULTS AND DISCUSSION

Optimized geometry of FPBENZ (Figure - 1) and TPBENZ (Figure - 2) is given below:

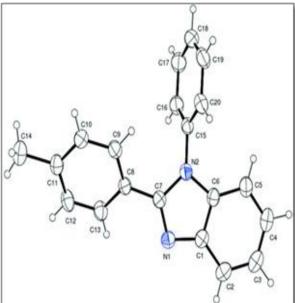


Figure - 1

Figure - 2

The experimental^[2] and optimized bond length (A°) and bond angles of 2- (4- fluorophenyl)-1- phenyl-1H- benzimidazole (Table - 1)

a. Bond length

No	Bond length	Experimental	Optimized value
		value (A ^o)	B3LYP/6-31G
1	F4—C24	1.3633	1.35000
2	N1—C2	1.3890	1.40717
3	N1—C8	1.3877	1.45766
4	N1—C11	1.4298	1.54000
5	N3—C2	1.3186	1.40768
6	N3—C9	1.3908	1.45750
7	C2—C21	1.4735	1.54000
8	C4—C5	1.3897	1.40491
9	C4—C9	1.3976	1.38996
10	C5—C6	1.4050	1.38996
11	C6—C7	1.3864	1.40492
12	C7—C8	1.3961	1.38028
13	C8—C9	1.4052	1.44578
14	C21—C22	1.3952	1.39516
15	C21—C26	1.4005	1.39483
16	C22—C23	1.3867	1.39471
17	C23—C24	1.3825	1.39543
18	C24—C25	1.3787	1.39482

C4—H4	0.9300	1.09891
		1.07071
C5—H5	0.9300	1.10026
С6—Н6	0.9300	1.10025
С7—Н7	0.9300	1.09889
C12—H12	0.9300	1.09965
C13—H13	0.9300	1.09968
C14—H14	0.9300	1.09968
C11—C12	1.3939	1.39516
C11—C16	1.3883	1.39483
C12—C13	1.3919	1.39471
C13—C14	1.384	1.39543
C14—C15	1.3891	1.39483
C15—C16	1.3920	1.38514
C15—H15	0.9300	1.09976
C16—H16	0.9300	1.09960
C22—H22	0.9300	1.09960
C23—H23	0.9300	1.09976
C25—H25	0.9300	1.09968
C26—H26	0.9300	1.09966
	C6—H6 C7—H7 C12—H12 C13—H13 C14—H14 C11—C12 C11—C16 C12—C13 C13—C14 C14—C15 C15—C16 C15—H15 C16—H16 C22—H22 C23—H23 C25—H25	C6—H6 0.9300 C7—H7 0.9300 C12—H12 0.9300 C13—H13 0.9300 C14—H14 0.9300 C11—C12 1.3939 C11—C16 1.3883 C12—C13 1.3919 C13—C14 1.384 C14—C15 1.3891 C15—C16 1.3920 C15—H15 0.9300 C22—H22 0.9300 C22—H22 0.9300 C23—H23 0.9300 C25—H25 0.9300

b) Bond angles (Table – 2)

No	Bond angles	Optimized value B3LYP/6-31G	Experimental value
1	C2-N1-C8	106.15	108.18308
2	C2-N1-C11	128.03	127.09446
3	C8-N1-C11	125.75	124.72246
4	C2-N3-C9	104.91	108.17556
5	N1—C2—N3	113.10	109.57281
6	N1—C2—C21	123.13	125.22226
7	N3-C2-C21	123.76	125.20494
8	C5—C4—C9	117.69	118.45159
9	C4—C5—C6	121.32	121.13865
10	C5—C6—C7	121.80	121.14115
11	C6-C7-C8	116.45	118.45527
12	N1—C8—C7	131.97	132.56253
13	N1—C8—C9	105.45	107.03388
14	C7—C8—C9	122.51	120.40359
15	N3-C9-C4	129.50	132.55593
16	N3-C9-C8	110.38	107.03468
17	C4—C9—C8	120.12	120.48939
18	N1—C11—C12	119.29	119.99719
19	N1—C11—C16	119.75	120.00431
20	C12—C11—C16	120.96	119.9849
21	C11—C12—C13	118.90	130.00859
22	C12—C13—C14	120.69	119.00420
23	C13—C14—C15	119.87	119.99398
24	C14—C15—C16	120.29	120.00469

25	C11—C16—C15	119.30	120.00003
26	C2—C21—C22	121.34	119.99722
27	C2—C21—C26	118.84	120.00430
28	C22—C21—C26	119.75	119.98848
29	C21—C22—C23	120.23	120.00862
30	C22—C23—C24	118.14	119.99413
31	F4—C24—C23	118.21	119.98107
32	F4—C24—C25	118.13	120.02489
33	C23—C24—C25	123.67	119.99403
34	C24—C25—C26	117.52	120.00474
35	C21—C26—C25	120.69	119.99997
36	C5—C4—H4	121.00	120.27663
37	C9—C4—H4	121.00	121.27141
38	C4—C5—H5	119.00	119.11130
39	C6—C5—H5	119.00	119.75004
40	C5—C6—H6	119.00	119.75260
41	C7—C6—H6	119.00	119.10625
42	C6—C7—H7	122.00	120.27026
43	C8—C7—H7	122.00	121.27447
44	C11—C12—H12	121.00	119.98080
45	C13—C12—H12	121.00	120.01057
46	C12—C13—H13	120.00	120.01280
47	C14—C13—H13	120.00	119.99300
48	C13—C14—H14	120.00	119.98115
49	C15—C14—H14	120.0	120.02486
50	C14—C15—H15	120.00	120.01134
51	C16—C15—H15	120.00	119.98397
52	C11—C16—H16	120.00	120.00802

53	C15—C16—H16	120.00	119.99194
54	C21—C22—H22	120.00	120.00802
55	C23—C22—H22	120.00	119.99201
56	C22—C23—H23	121.00	119.98388
57	C24—C23—H23	121.00	120.01139
58	C24—C25—H25	121.00	119.99312
59	C26—C25—H25	121.00	120.01275
60	C21—C26—H26	120.00	119.98077
61	C25—C26—H26	120.00	120.01056

The experimental^[3] and optimized bond length (A^o) and bond angles of 1- phenyl - 2- p- tolyl-1H- benzimidazole

a) Bond length (Table – 3)

No	Bond lengths	Experimental value(A°)	Optimized value B3LYP/6-31G
1	N1—C1	1.387	1.45750
2	N1—C7	1.318	1.40768
3	N2—C6	1.383	1.45766
4	N2—C7	1.383	1.40717
5	N2—C15	1.431	1.54000
6	C1—C2	1.393	1.38033
7	C1—C6	1.389	1.44578
8	C2—C3	1.370	1.40491
9	C16—C17	1.373	1.39514
10	C17—C18	1.352	1.39483

11	C18—C19	1.378	1.39543
12	C19—C20	1.388	1.39471
13	С2—Н2	0.9300	1.09891
14	С3—Н3	0.9300	1.10026
15	C4—H4	0.9300	1.10025
16	С5—Н5	0.9300	1.09889
17	C3—C4	1.387	1.38996
18	C4—C5	1.372	1.40492
19	C5—C6	1.381	1.38028
20	C7—C8	1.468	1.5400
21	C8—C9	1.386	1.39483
22	C8—C13	1.386	1.39516
23	C9—C10	1.377	1.39514
24	C10—C11	1.381	1.39483
25	C11—C12	1.382	1.39543
26	C11—C14	1.506	1.5400
27	C12—C13	1.379	1.39471
28	C15—C16	1.371	1.39483
29	C15—C20	1.373	1.39516
30	С9—Н9	0.9300	1.09960
31	C10—H10	0.9300	1.09976
32	C12—H12	0.9300	1.09968
33	C13—H13	0.9300	1.09966
34	C14—H14A	0.9600	1.07000

35	C14—H14B	0.9600	1.07000
36	C14—H14C	0.9600	1.0700
37	C16—H16	0.9300	1.09960
38	C17—H17	0.9300	1.09976
39	C18—H18	0.9300	1.09968
40	C19—H19	0.9300	1.09968
41	C20—H20	0,9300	1.09966

b) Bond angle (Table – 4)

No	Bond angles	Experimental value	Optimized value
			B3LYP/6-31G
1	C1—N1—C7	105.41	103.78253
2	C6—N2—C7	106.49	112.38875
3	C6—N2—C15	122.81	120.93870
4	C7—N2—C15	130.43	126.67162
5	N1—C1—C2	130.20	130.33872
6	N1—C1—C6	110.19	114.36519
7	C2—C1—C6	119.61	115.29608
8	C1—C2—C3	117.71	119.18779
9	C2—C3—C4	121.64	122.68557
10	C3—C4—C5	121.73	120.64021
11	C4—C5—C6	116.43	116.76538
12	N2—C6—C1	105.72	99.12817
13	N2—C6—C5	131.41	133.44687
14	C1—C6—C5	122.88	127.42493
15	N1—C7—N2	112.19	110.33533
16	N1—C7—C8	123.20	1210.69353

17	N2—C7—C8	124.60	128.97104
18	C7—C8—C9	123.12	122.14373
19	C7—C8—C13	118.97	121.20764
20	C9—C8—C13	117.81	116.64863
21	C8—C9—C10	120.76	121.57575
22	C9—C10—C11	121.86	121.83689
23	C10—C11—C12	117.08	116.54345
24	C10—C11—C14	120.82	121.78519
25	C12—C11—C14	122.09	121.66909
26	C11—C12—C13	121.77	121.83166
27	C8—C13—C12	120.72	121.55593
28	N2—C15—C16	119.43	119.45192
29	N2—C15—C20	119.29	119.47555
30	C16—C15—C20	121.25	121.07004
31	C15—C16—C17	119.32	119.22475
32	C16—C17—C18	120.5	119.61386
33	C17—C18—C19	120.47	121.24334
34	C18—C19—C20	119.9	119.65601
35	C15—C20—C19	118.57	119.19114
36	C1—C2—H2	121.00	120.32669
37	C3—C2—H2	121.00	120.48250
38	C2—C3—H3	119.00	117.82988
39	C4—C3—H3	119.00	119.48455
40	C3—C4—H4	119.00	121.61201
41	C5—C4—H4	119.00	117.74777
42	C4—C5—H5	122.00	119.57687
43	C6—C5—H5	122.00	125.65775

44	С8—С9—Н9	120.00	119.04160
45	С10—С9—Н9	120.00	119.38179
46	C9—C10—H10	119.00	118.56429
47	C11—C10—H10	119.00	119.59875
48	C11—C12—H12	119.00	119.57197
49	C13—C12—H12	119.00	118.59610
50	C8—C13—H13	120.00	118.76396
51	C12—C13—H13	120.00	119.67882
52	C11—C14—H14A	109.00	113.84058
53	C11—C14—H14B	109.00	113.82269
54	C11—C14—H14C	109.00	111.59477
55	H14A—C14—H14B	109.00	106.04195
56	H14A—C14—H14C	110.00	105.41103
57	H14B—C14—H14C	109.00	105.39224
58	C15—C16—H16	120.00	119.55107
59	C17—C16—H16	120.00	121.22409
60	C16—C17—H17	120.00	118.86247
61	C18—C17—H17	120.00	121.52306
62	C17—C18—H18	120.00	119.38696
63	C19—C18—H18	120.00	119.36956
64	C18—C19—H19	120.00	121.46658
65	C20—C19—H19	120.00	118.87724
66	C15—C20—H20	121.00	119.53761
67	C19—C20—H20	121.00	121.27125

Comparative study of vibrational spectra of FPBENZ (Figure - 3) and TPBENZ (Figure - 4)

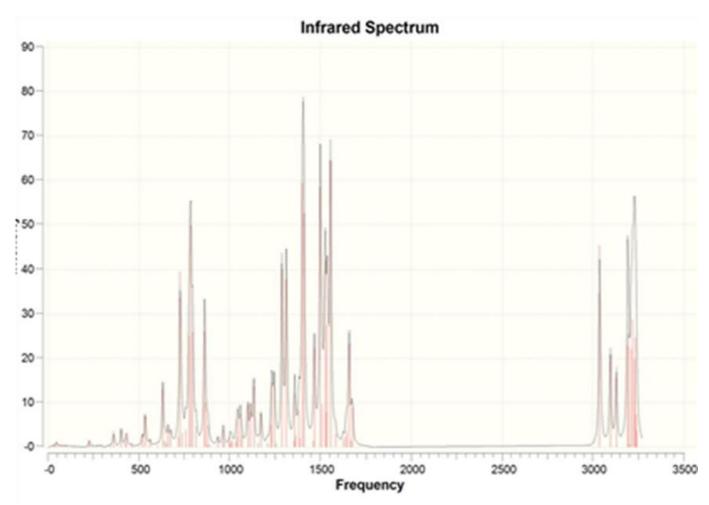


Figure – 3 IR spectrum of FPBENZ

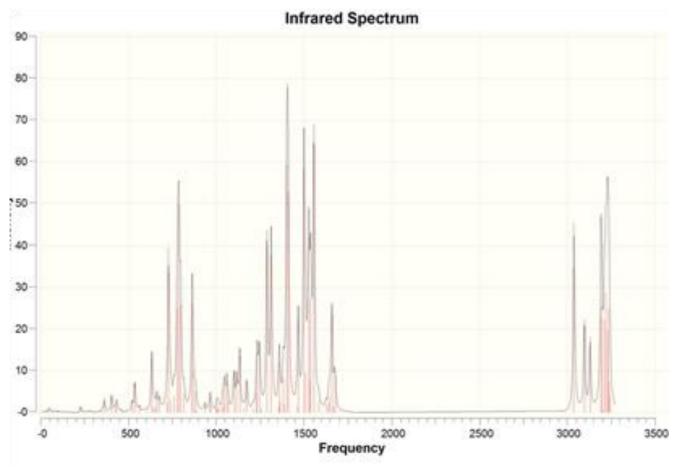


Figure - 4 IR spectrum of TPBENZ

The band obtained in the vibrational spectra gives important information regarding the structure and chemical properties of molecules. The characteristic vibrational frequency of Benzimidazole, phenyl, C-F [from FPBENZ] and methyl [from TPBENZ] groups was analyzed.

1) Aromatic C-H vibration

The nitrogen heterocyclic aromatic compounds commonly exhibit stretching vibration in the region 3100-3000 cm⁻¹. According to the present investigation the C-H stretching vibration bands due to 4-fluro phenyl group is 3237.75 cm⁻¹ and phenyl group attached to imidazole and 1-phenyl groups has value 3220.59 cm⁻¹. C-H stretching frequency obtained from 4-methyl

phenyl group is 3228.75 cm⁻¹ and phenyl group of attached to imidazole and 1-phenyl group has C-H stretching frequency is 3218.9 cm⁻¹. Also the C-H in plane deformation vibration band of variable intensity appear in the region 1300-1180[1224.61 for FPBENZ & 1221.98 for TPBENZ]. Aromatic C-H bending vibration for FPBENZ is observed at 1555.55 cm⁻¹ and for TPBENZ it is 1538.41 cm⁻¹.

2) C=C and C-C vibrations

The C=C stretching vibrations are observed in the region 1670-1430 cm⁻¹. The C=C frequency is increases as alkyl group attached to the double bond. But the presence of electronegative group decreases the value. In FPBENZ the C=C

stretching vibration observed at 1407.4 cm⁻¹. In TPBENZ the value is 1399.2 cm⁻¹.

3) C=N and C-N vibrations

The C=N and C-N stretching vibration observed at the region 1680-1200 cm⁻¹. In FPBENZ the C=N and C-N stretching vibrations are observed at 1672.07 cm⁻¹ and 1289.38 cm⁻¹. The TPBENZ are observed at 1643.46 cm⁻¹ and 1248.46 cm⁻¹. The electron donating group in TPBENZ result the lengthening of C=N bond hence bond order

reduced. Nitrogen atom a H bond acceptor resulting inter molecular H bonding. In the case of FPBENZ the F atom accept electron from neighboring group hence N atom does not take part in H bonding.

4) Methyl C-H vibration

The methyl group is an less electronegative group hence its vibrational value in TPBENZ is 3045.6 cm⁻¹. C-H deformation value is obtained at the region 1420.3 cm⁻¹.

Comparative study of 1H NMR spectra of FPBENZ (Figure - 5) and TPBENZ (Figure - 6)

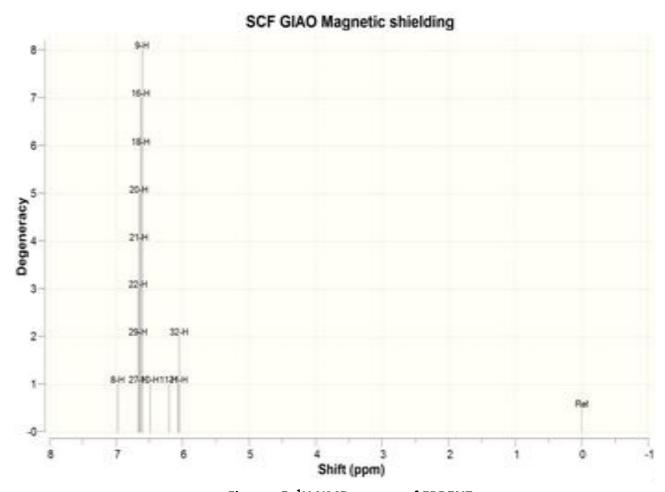


Figure - 5 ¹H NMR spectra of FPBENZ

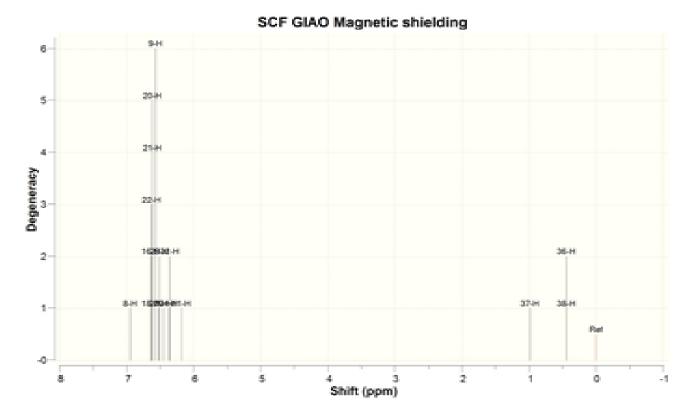


Figure - 6 ¹H NMR spectra of TPBENZ

The FPBENZ and TPBENZ was characterized by 1 H NMR using GIAO method using 6-31G basis set. Aromatic proton in the FPBENZ and TPBENZ was observed in the region 6-7 ppm. But in TPBENZ the methyl group is present in the Para position of phenyl group attached to the second portion of Benzimidazole. It gives 3H singlet 4-1 ppm. In this compound the presence of electron donating group resulting in up field shift [low δ value]. But in FPBENZ high electronegative group result high δ value [down field shift].

Frontier Molecular Orbital Analysis

Multi aryl compounds are characterized by HOMO and LUMO separation, which arises due to significant degree of inter-

molecular charge transfer (ICT) from the electron-donor to the efficient electron acceptor group. The frontier molecular orbital determine the way in which molecules interact with each other.The HOMO is the orbital that primarily act as an electron donor and the LUMO is the orbital that largely act as the electron acceptors. The gap between HOMO and LUMO characterizes the molecular stability and activity.The more conjugation (free movement of electrons) there is in a molecule, the less of an energy gap will exist between HOMO and LUMO and also the molecular orbital energy gap decreased with a decrease in electro negativity functional group.The HOMO-LUMO energy gap of FPBENZ and TPBENZ has been calculated at DFT/6-31G levels. The molecular topology of

HOMO-LUMO orbitals of FPBENZ and TPBENZ are shown in following (Figure 7 &8).

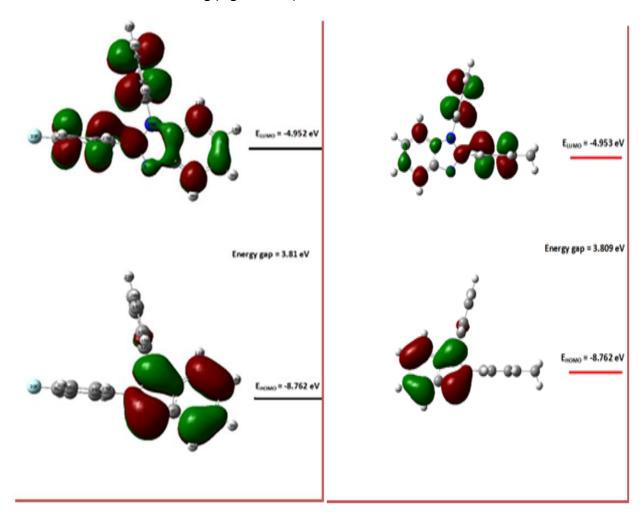


Figure – 7 HOMO-LUMO plot of FPBENZ

Figure - 8 HOMO-LUMO plot of TPBENZ

The Figure - 7 represents the molecular topology of FPBENZ. In this compound the more electronegative element such as F is attached to the para position of TPBENZ, which is high electron withdrawing group, also the HOMO is located over Benzimidazole and phenyl ring where as

LUMO is localized over C-F bonds. The HOMO-LUMO energy of FPBENZ are found to be

HOMO = -8.762

LUMO = -4.952

Energy gap = 3.81 eV

The Figure – 8 represents the molecular topology of TPBENZ. In this compound the less electronegative group such as CH₃ is attached to the para position of TPBENZ, which is electron donating group. Also the HOMO is located over Benzimidazole and phenyl ring. Whereas LUMO is localized over entire molecule. The HOMO-LUMO energy of TPBENZ are found to be

HOMO = -8.762

LUMO = -4.952

Energy gap = 3.809 Ev

The energy gap difference between FPBENZ and TPBENZ is very small and the value is 0.001. Indicating that both the molecules can effectively be used electron transport materials.

A molecule with a small HOMO-LUMO energy gap is more polarizable and is generally associated with a high chemical reactivity and low kinetic stability [4;5]. Frontier molecular orbital consist of π – aromatic orbitals, so an electron transition from HOMO to LUMO is mainly derived from the electronic transitions of π - π *. Frontier molecular orbital analysis supports the fact **FPBENZ** and TPBENZ the approximately same energy band gap. So they could be a suitable NLO active and electron transport material.

Nonlinear Optical Properties

The first hyperpolarisability (β_0) of thin novel molecular systems are calculated using the effective core potential basis set method

(HF/6-31G). E_0 being the energy of an unperturbed molecule, the Taylor series expansion of the energy in an external electric field is

$$\begin{split} E &= E_{\text{o}} \text{ - } \sum \! \mu_{i} \, F_{i} - 1/2 \, \sum \, \alpha_{ij} \, F^{i} \, F^{j} - 1/6 \\ \sum \, \beta_{ijk} \, F^{i} \, F^{j} \, F^{k} - \, 1/24 \, \sum \, F^{i} \, F^{j} \, F^{k} \, F^{-k} \, + \\ \dots \dots \end{split}$$

 β_{ijk} gives the component of first hyperpolarisability. The first hyperpolarisability can be represented by a 3x3x3x matrix of third rank tensor and is given as

$$\beta_0 = (\beta_x^2 + \beta_y^2 + \beta_z^2)^{1/2}$$

Where

$$\beta_x = \beta_{xxx} + \beta_{xyy} + \beta_{xzz}$$

$$\beta_{y} = \beta_{yyy} + \beta_{xxy} + \beta_{yzz}$$

$$\beta_{z} = \beta_{zzz} + \beta_{xxz} + \beta_{yyz}$$

The 27 component of the 3D matrix can be reduced to 10 components due to Kleinman symmetry [5] . The non-zero first order hyperpolarisability values are obtained by the numerical second order derivative of the electric dipole according to the applied field strength. There is a rather strong relationship between the calculated dipole moment and the first order hyperpolarisability values. Therefore in this study the dipole moment values may be responsible for enhancing or decreasing the first order hyperpolarisability values. The first order hyperpolarisability is more dominant in xyy direction $[\beta_{xyy}]$ thus the charge transfer mechanism is more in particular direction assigned.

The calculated first hyperpolarisability of the FPBENZ		The calculated first hyperpolarisability of the FPBENZ		
((Table - 5)		(Table - 5)	
βxxx	-39.354385	βxxx	1.26054	
βχχγ	-2.4106683	Bxxy	6.599463	
βχγγ	-31.1094101	βχγ	-54.4215	
βууу	2.7758085	βууу	10.27804	
βxxz	1.7519203	βxxz	-13.0814	
βχуΖ	2.1912738	βхуz	94	
βууz	30.2317176	βууz	1.240114	
βxzz	-125.6349063	βxzz	-125.213	
βyzz	24.1696052	βyzz	11.97998	
βzzz	201.5675507	βzzz	-240.902	

The calculated first hyperpolarisability of the FPBENZ (Table - 5) is $2.64 * 10^{-30}$ esu. And TPBENZ (Table - 6) is $2.64 * 10^{-30}$ esu. This is larger than that of standard NLO material urea $(0.13 \times 10^{-30} \text{ esu})^{[6]}$. But experimental evaluation of this data is not readily

available. We conclude that the FPBENZ and TPBENZ is an attractive object for future studies of nonlinear optical properties. The dipole moment value calculated for FPBENZ is 4.2347 D. and the TPBENZ is 3.9379 D.

CONCLUSION

Multy aryl compounds widely used as electron transport material, NLO materials

and drugs. The theoretical and experimental comparative studies of these compounds are important to understand the nature, property and applicability.

2-(4-fluorophenyl)-1-(phenyl)-1H- benzimidazole and 1-(phenyl)- 2- (p- tolyl)- 1-H-benzimidazole were theoretically studied using Gaussian03 software. The geometry optimization of the title compounds were carried out using DFT using B3LYP/6-31G basis set. The position of proton of FPBENZ and TPBENZ were analyzed by ¹HNMR spectra. Also different vibrations were studied using FTIR spectroscopy. The topologies from HOMO-LUMO analysis, first order hyperpolarisability and dipole moment values indicate that the title compounds could be an efficient NLO

material. The first hyperpolarisability of FPBENZ and TPBENZ were found to be about 20 times greater than urea. Also the comparative study of experimental values of geometric parameters is approximately good agreement with theoretically calculated values. These results suggest that the title compounds could be an effective NLO active and electron transport material. Also the presence of electronegative group has a negligible effect on HOMO- LUMO energy band gap. Hence both compounds can be used as electron transport and NLO active materials.

REFERENCES

- [1] Shodhganga, chemistry of coumarin benzimidazoles, chapter- 3, 74.
- [2] K. Jayamoorthy, S. Rosepriya, A. Thiruvalluvar, J. Jayabharathi, and R. J. Butcher, 2-(4-Fluorophenyl)-1-phenyl-1*H*-benzimidazole.
- [3] T. Mohandas,a K. Jayamoorthy,b P. Sakthivelc and J. Jayabharathi, 1-Phenyl-2-p-tolyl-1H-benzimidazole
- [4] B. Kosar, C. Albayrak, Spectrochem. Acta 78 (2011) 160- 167.
- [5] D. A. Kleinman, Phys. Rev. 126 (1962) 1977- 1979.
- [6] M. Adant, M. Dupuis, J. L. Bredas, Int. J. Quantum. Chem. 56 (1995) 497-507.