

QP CODE: 22001756

Reg No

.....

Name

M Sc DEGREE (CSS) EXAMINATION, AUGUST 2022

Fourth Semester

Core - ME010401 - SPECTRAL THEORY

M Sc MATHEMATICS,M Sc MATHEMATICS (SF)
2019 ADMISSION ONWARDS
DC24216F

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any eight questions.
 Weight 1 each.

- Define strong and weak convergence of a sequence in a normed space. Prove that strong convergence implies weak convergence with the same limit.
- 2. If $S_n, T_n \in B(X,Y)$, and (S_n) and T_n are strongly operator convergent with limits S and T, Show that $(S_n + T_n)$ is strongly operator convergent with the limit S + T.
- 3. Define the spectral radius $r_{\sigma}(T)$ of an operator $T \in B(X, X)$, where X is a Banach space. Also write down the expression for finding $r_{\sigma}(T)$.
- 4. Let $T\in B(X,X)$, where X complex Banach space and $\mu,\lambda\in
 ho(T)$. Then prove that $R_\lambda R_\mu=R_\mu R_\lambda$.
- 5. Let matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $B = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$, where a, b, c, d are real numbers and $ad bc \neq 0$. If $\{2, 3\}$ is the spectrum of A, find the spectrum of B.
- 6. Define Banach algebra with example.
- 7. Show that the resolvent $\rho(x)$ is open, where $x \in A$ and A is a complex Banach algebra with identity.
- 8. If T is a compact linear operator on a normed space X prove that the range of T_{λ}^{r} is closed for every $\lambda \neq 0$.
- 9. Define self-adjoint linear operator on a Hilbert space. Prove that the eigen vectors corresponding to distinct eigen values of a bounded self-adjoint linear operator on a complex Hilbert space are orthogonal.
- 10. Let T be a bounded self-adjoint linear operator on a Hilbert space H. Show that if $T \ge 0$, then $(I + T)^{-1}$ exists.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any six questions.

Weight 2 each.

11. Let $T_n: l^2 \to l^2$ be a sequence of operators defined as

$$T_n(x) = (\underbrace{0,0,\cdots,0}_{ ext{n zeros}}, \xi_1, \xi_2, \xi_3, \cdots)$$

where $x=(\xi_1,\xi_2,\cdots)\in l^2$. Show that

- (a) T_n is linear and bounded.
- (b) T_n is weakly operator convergent to 0 but not strongly.
- 12. Let X and Y be Banach spaces and $T : \mathcal{D}(T) \to Y$ a closed linear operator, where $\mathcal{D}(T) \subset X$. Prove that if $\mathcal{D}(T)$ is closed in X, then the operator T is bounded.
- 13. Define eigenvalues of a linear operator $T:D(T)\to X$, where $X\neq\{0\}$ is a complex normed space and $D(T)\subset X$. Also, give an example for a linear operator having spectral values which are not eigenvalues. Justify your answer.
- 14. Let $T: X \to X$ be a bounded linear operator on a complex Banach space X. Prove that the resolvent operator $R_{\lambda}(T)$ is holomorphic at every point $\lambda_0 \in \rho(T)$.
- 15. Show that $T:l^2 o l^2$ defined by $Tx=y=(\eta_j), \eta_j=rac{\xi_j}{2}$ is compact, where $x=(\xi_j), j=1,2,3,\cdots$
- 16. If B is a totally bounded subset of a metric space X, prove that B contains a finite ϵ net for every $\epsilon > 0$.
- 17. Prove that the spectrum of a bounded self-adjoint linear operator on a complex Hilbert space lies in a closed interval on the real axis.
- 18. Show that the difference $P = P_2 P_1$ of two projections on a Hilbert space H is a projection on H if and only if $P_1 \leq P_2$.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.

- 19. (a) Prove that a bounded linear operator T from a Banach space X onto a Banach space Y has the property that the image $T(B_0)$ of the open unit ball $B_0 = B(0;1) \subset X$ contains an open ball about $0 \in Y$.
 - (b) State and prove Open Mapping Theorem.
- 20. Let $T: X \to X$ be a contraction on a complete metric space $(X,d); X \neq \phi$. Prove that T has precisely one fixed point.
- 21. Let $T: X \to X$ be a compact linear operator on a Banach space X, and $\lambda \neq 0$. Prove that there exists a smallest integer r such that from n = r onwards the null spaces $\mathcal{N}(T_{\lambda}^n)$ are all equal and if r > 0, the inclusions $\mathcal{N}(T_{\lambda}^0) \subset \mathcal{N}(T_{\lambda}) \subset \mathcal{N}(T_{\lambda}^2) \subset \cdots \subset \mathcal{N}(T_{\lambda}^n)$ are all proper.
- 22. State and prove a necessary and sufficient ondition for a projection on a Hilbert space H.

(2×5=10 weightage)