

QP CODE: 23114613	Reg No		
	Name	•	

B.Sc DEGREE (CBCS) SPECIAL SUPPLEMENTARY EXAMINATIONS, APRIL 2023 Fifth Semester

Bachelor of Sports Management

CORE COURSE - MM5CRT01 - MATHEMATICAL ANALYSIS

Common for B.Sc Mathematics Model I, B.Sc Mathematics Model II Computer Science & B.Sc Computer Applications Model III Triple Main

2020 Admission Only

68DAE135

Time: 3 Hours Max. Marks: 80

Part A

Answer any ten questions.

Each question carries 2 marks.

- 1. Define finite and infinite sets with proper examples?
- 2. Define ϵ neighbourhood of a point? If x belongs to $V_\epsilon(a)$ for all $\epsilon>0$ then prove that x=a?
- 3. Define supremum, infemum of sets? What is the supremum and infemum of the set $A=\{\frac{1}{n}:n\in N\}?$
- 4. Define rational numbers in terms of the decimal expansion? Find the decimal representation of $-\frac{2}{7}$?
- 5. Find $lim(\frac{2n}{n+2})$.
- 6. If $X = (x_n)$ is a convergent sequence of real numbers such that $x_n \ge 0$ for every n, then prove that $x = \lim_{n \to \infty} (x_n) \ge 0$.
- 7. Prove that $lim(\frac{2n}{n^2+1})=0$.

- 8. Use the recurrance relation of nth term of a sequence that converges to \sqrt{a} to find the value of $\sqrt{2}$ correct to 4 decimal places.
- 9. Let (x_n) and (y_n) be two sequences of real numbers and suppose that $x_n \le y_n$ for all n. Prove that if $\lim x_n = +\infty$ then $\lim y_n = +\infty$.
- 10. Show that the series $\sum \frac{\cos n}{n^2}$ is convergent.
- 11. Establish the convergence or divergence of the series $\sum \frac{1}{(n+1)(n+2)}$
- 12. Show that $\lim_{x \to c} x^3 = c^3$ for any $c \in \mathscr{R}$.

 $(10 \times 2 = 20)$

Part B

Answer any six questions.

Each question carries 5 marks.

- 13. Prove that If A, B are bounded sets then $Sup\ (A+B)=Sup\ A+Sup\ B$ where $A+B=\{a+b:a\in A,b\in B\}$
- 14. If $I_n=[a_n,b_n], n\in N$ be a nested sequence of closed, bounded intervals such that the lengths b_n-a_n of I_n satisfy $Inf\{b_n-a_n:n\in N\}=0$, then Prove that the number η contained in I_n \forall n is unique?
- 15. Prove that the m-tail of a sequence converges if and only if the sequence converges.
- State and prove Bolzano-Weierstrass Theorem.
- 17. State and prove Cauchy Convergence Criterion.
- 18. Give an example of a convergent series Σa_n so that Σa_n^2 is not convergent.
- 19. State and prove Alternating Series Test.
- 20. Evaluate the one-sided limits of the function $h(x)=rac{1}{(e^{rac{1}{x}}+1)}$ at x=0.
- 21. Let $A\subseteq \mathscr{R},\,f,g:A\to \mathscr{R},\,c\in \mathscr{R}$ be a cluster point of A. If $f(x)\leq g(x)$ for all $x\in A,x\neq c$, Then prove the following
 - (a) If $\lim_{x \to c} f = \infty$, then $\lim_{x \to c} g = \infty$.
 - (b) If $\lim_{x \to c} g = -\infty$, then $\lim_{x \to c} f = -\infty$.

Part C

Answer any two questions.

Each question carries 15 marks.

- 22. Prove that the set of all real numbers is a complete ordered field?
- 23. (a) State and prove Monotone Convergence Theorem.
 - (b) Let Z = (z_n) be the sequence defined as z_1 = 1 and z_{n+1} = $\sqrt{2z_n}$ forevery n. Show that $\lim(z_n)$ = 2.
- 24. Test the convergence and absolute convergence of the following series.

1.
$$\sum_{1}^{\infty} \frac{(-1)^{n+1}}{(n+1)}$$

- 2. Whose nth term is $\frac{(-1)^n n^n}{(n+1)^{n+1}}$
- 25. (a) Let $A\subseteq \mathscr{R}$, $f:A\to \mathscr{R}$ and let $c\in \mathscr{R}$ be a cluster point of A. If $a\leq f(x)\leq b$ for all $x\in A, x\neq c$, and if $\lim_{x\to c}f$ exists, Then prove that $a\leq \lim_{x\to c}f\leq b$.
 - (b) Check whether the following limits exist or not. Give explanations

(1)
$$\lim_{x\to 0} \cos\left(\frac{1}{x}\right)$$
 (2) $\lim_{x\to 0} x\cos\left(\frac{1}{x}\right)$

 $(2 \times 15 = 30)$