

QP CODE: 23004833

Reg No :

Name :

MSc DEGREE (CSS) EXAMINATION , JULY 2023 Second Semester CORE - ME010205 - MEASURE AND INTEGRATION

M Sc MATHEMATICS,M Sc MATHEMATICS (SF)
2019 Admission Onwards
4ACB7898

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any **eight** questions.

Weight **1** each.

- 1. Define Borel sets. Show that every interval is a Borel set.
- 2. State and prove the excision property of measurable sets.
- 3. Define Cantor-Lebesgue function.
- 4. Define a simple function and its canonical form. Also define pointwise convergence of a sequence of functions. State the simple approximation Theorem.
- 5. Verify by an example that pointwise convergence of a sequence $\{f_n\}$ of bounded Lebesgue measureable functions on a set of finite measure E, is not sufficient for passage of limit under integral sign
- 6. State and prove monotone convergence theorem for nonnegative Lebesgue measurable functions.
- 7. Define $\sigma-$ finite measure space. Prove that the Lebesgue measure on R is $\sigma-$ finite.
- 8. If ν is a signed measure on a measurable space (X,\mathcal{M}) , show that for each $E\in\mathcal{M}$, $-\nu^-(E)\leq \nu(E)\leq \nu^+(E)$ and $|\nu(E)|\leq |\nu|(E)$, where ν^+ and ν^- are the Jordan decompositions of ν .
- 9. Let (X,\mathcal{M},μ) be a measure space and f a nonnegative measurable function on X for which $\int\limits_X f \ d\mu < \infty$. Then prove that f is finite a.e. on X and $\{x \in X/f(x) > 0\}$ is σ finite.
- 10. State Tonelli's Theorem.

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight **2** each.

11. If
$$\{E_k\}_{k=1}^\infty$$
 is any countable collection of sets, then prove that $m^*\left(igcup_{k=1}^\infty E_k
ight)=\sum\limits_{k=1}^\infty m^*(E_k)$

- 12. Let $\{E_k\}_{k=1}^\infty$ be a countable disjoint collection of Lebesgue measurable sets. Prove that for any set A, $m^*\left(A\cap\left(\bigcup\limits_{k=1}^\infty E_k\right)\right)=\sum\limits_{k=1}^\infty m^*(A\cap E_k)$
- 13. Define Lebesgue measurability of a function. Prove that a function f on a Lebesgue measurable set E is Lebesgue measurable if and only if the inverse image under f of every open set is Lebesgue measurable.
- 14. Define Riemann Integrablity of f over [a,b] . Show that the pointwise limit of sequence of Riemann integrable functions need not be Riemann integrable
- 15. Prove that finite union of measurable sets is measurable.
- 16. Let E be a measurable subset of X and f an extended real valued function on X. Show that f is measurable if and only if its restrictions to E and $X \sim E$ are measurable.
- 17. 1. Let (X,\mathcal{M},μ) be a measure space and ψ be nonnegative simple functions on X. If $X_0\subseteq X$ is measurable and $\mu(X-X_0)=0$, then prove that $\int\limits_X\psi\,d\mu=\int\limits_{X_0}\psi\,d\mu$
 - 2. Let (X,\mathcal{M},μ) be a measure space, ϕ and ψ be nonnegative simple functions on X . If $\psi \leq \phi$ a.e on X then $\int_X \psi \ d\mu = \int_X \phi \ d\mu$
- 18. Let (X,\mathcal{M},μ) be a measure space and $\{f_n\}$ a sequence of functions on X that is both uniformly integrable and tight over X. If $\{f_n\}\to f$ pointwise a.e. on X and the function f is integrable over X, prove that $\lim_{n\to\infty}\int\limits_E f_n\ d\mu=\int\limits_E f\ d\mu$

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any **two** questions.

Weight **5** each.

- 19.
 1. Let E be a bounded measurable set of real numbers. Suppose there is a bounded, countably infinite set Λ of real numbers for which the collection of translates of $\{\lambda+E\}_{\lambda\in\Lambda}$ is disjoint. Then prove that m(E)=0.
 - 2. State and Prove Vitali's theorem.
- Prove that Lebesgue integration of bounded Lebesgue measurable functions on sets of finite measure satisfies the properties of Linearity, Monotonicity and Additivity over domains of integration.

- 21. Let ν be a signed measure on the measurable space (X,\mathcal{M}) . Prove that there exists a positive set A and a negative set B such that $X=A\cup B$ and $A\cap B=\phi$ Also prove that the pair $\{A,B\}$ is unique except for null sets.
- 22. State and prove Radon Nikodym Theorem.

(2×5=10 weightage)