

QP CODE: 23004830

Reg No :

MSc DEGREE (CSS) EXAMINATION, JULY 2023

Second Semester

CORE - ME010202 - ADVANCED TOPOLOGY

M Sc MATHEMATICS,M Sc MATHEMATICS (SF)
2019 Admission Onwards
2588B36E

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any **eight** questions.

Weight **1** each.

- 1. Show that in a Hausdorff space X, a point x and a finite subset not containing x can be separated using disjoint open sets in X
- 2. Show that "if at all an extension of a map $f: A \rightarrow R$ exists its values on closure of A are uniquely determined by the value on A; where A is subset of a space X"
- 3. Define the term standard base and standard sub-base for the product topology.
- 4 Show that projection functions are open?
- 5. What is the relation between productive property, countably productive property and finitely productive property?
- 6. Characterise evaluation function.
- 7. Characterise (a) Tychonoff space and (b) Completely regular spce.
- 8. Prove that the union of a locally finite family of closed sets is a closed set.
- 9. Suppose S: D → X is a net and F is a cofinal subset of D. If S/F: F → X converges to a point x in X, show that x is a cluster point of S
- 10. Define path homotopy between two paths f and g in a space X

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight **2** each.

11. Show that a connected $T_4\,$ space with atleast two points must be uncountable

- 12. Let A be a closed subset of a normal space X and suppose $f: A \to (-1,1)$ is a continuous function. Show that there exists a continuous extension of f to X
- 13. Prove that a subset of X is a large box if and only if it is the intersection of finitely many walls.
- 14. Prove that a product of topological spaces is completely regular if and only if each coordinate space is completely regular
- 15. Obtain a condition under which the evaluation function is one-to-one. State the definition used in the proof.
- 16. Prove that every countably compact metric space is second countable.
- 17. (a) Define Directed set
 - (b) Define a net
 - (c) Give one example for each
- 18. Let S: D→ X is a net in a topological space X and let x in X. Show that x is a cluster point of S if there exists a subnet of S which converges to x in X

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.

- State and prove Tychonoff theorem on normality and hence deduce that every regular second countable space is normal
- a) Define the product of an indexed family of sets starting from the definition of cartesian product of finite sets.
 - b) Define projection function on product space and give an example
 - c) Describe the products $1)[0,1] \times [0,1]$ and $2)\{1,2,3\} \times R$ in the cartesian plane
- 21. Prove that in a metric space compactness, countable compactness and sequential compactness are equivalent.
- 22. a) Define the convergence of net in a space
 - b) Characterise Hausdorff spaces in terms of convergence of nets in it
 - c) Give an example to show that the term net cannot be replaced by sequence in question b.

(2×5=10 weightage)

115