

QP CODE: 23004829

Reg No

Name

......

MSc DEGREE (CSS) EXAMINATION , JULY 2023

Second Semester

CORE - ME010201 - ADVANCED ABSTRACT ALGEBRA

M Sc MATHEMATICS,M Sc MATHEMATICS (SF)
2019 Admission Onwards
F3683C40

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any **eight** questions.

Weight **1** each.

- 1. Find $irr(\sqrt{1+\sqrt{3}},\mathbb{Q})$
- 2. If γ is constructible and $\gamma \notin \mathbb{Q}$, then prove that $[\mathbb{Q}(\gamma):\mathbb{Q}]=2^r$ for some integer $r\geq 0$.
- 3. Check whether the function ν for the integral domain $\mathbb{Z}[x]$ given by $\nu(f(x))=$ (degree of f(x)) for $f(x)\in\mathbb{Z}[x], f(x)\neq 0$ is a Euclidean norm.
- 4. State Euclidean algorithm.
- 5. Define a multiplicative norm in $\mathbb{Z}[i]$, which is a Euclidean norm also.
- 6. Let α be algebraic of degree n over a field F. Prove that there are at most n different isomorphisms of $F(\alpha)$ onto a subfield of \overline{F} and leaving F fixed.
- 7. If $E \leq \overline{F}$ is an algebraic extension of a field F and $\alpha, \beta \in E$ are conjugate over F, then prove that the conjugation isomorphism $\psi_{\alpha,\beta}: F(\alpha) \to F(\beta)$ can be extended to an isomorphism of E onto a subfield of \overline{F} .
- 8. Define the index of E over F where E be a finite extension of a field F. Illustrate the definition with an example.
- 9. Let K be a finite normal extension of a field F and let E be an extension of F, where $F \leq E \leq K \leq \overline{F}$. Prove that K is a finite normal extension of E.
- 10. Define the nth cyclotomic extension of a field F. Give an example.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight **2** each.

- 11. Let E be an algebraic extension of a field F. Then prove that there exist a finite number of elements α_1 , α_2 ,..., α_n in E such that $E = F(\alpha_1, \alpha_2,...,\alpha_n)$ if and only if E is a finite dimensional vector space over F
- 12. Prove that a field is algebraically closed if and only if every non constant polynomial in F[x] factors in F[x] into linear factors. Also show that an algebraically closed field has no proper algebraic extensions.
- 13. Let D be a PID. Prove that every element that is neither 0 nor a unit in D is a product of irreducibles.
- 14. If D is a UFD, then prove that for every nonconstant f(x) in D[x], f(x) = (c)g(x), where c belongs to D and g(x) in D[x] is primitive. Also prove that the element c is unique upto a unit factor in D and g(x) is unique upto a unit factor in D.
- 15. Let F be a subfield of a field E. Prove that the set G(E/F) of all automorphisms of E leaving F fixed forms a subgroup of the group of all automorphisms of E. Also prove that $F \leq E_{G(E/F)}$.
- 16. Show that if [E:F]=2, then E is a splitting field over F.
- 17. Let F be a field and f(x) be an irreducible polynomial in F[x]. Prove that all zeros of f(x) in \overline{F} have the same multiplicity.
- 18. Let K be a finite extension of degree n of a finite field F of p^r elements. Prove that G(K/F) is cyclic of order n and is generated by σ_{p^r} , where for $\alpha \in K$, $\sigma_{p^r}(\alpha) = \alpha^{p^r}$

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any **two** questions.

Weight **5** each.

- 19. a) Prove that a finite field $GF(p^n)$ of p^n elements exists for every prime power p^n .

 b) If E and E' are fields of order p^n , then prove that $E \simeq E'$.
- a) If D is a UFD, then prove that a product of two primitive polynomials in D[x] is again primitive.b) If D is a UFD, then prove that D[x] is a UFD.
- 21. Define splitting field over a field F. Prove that a field E, $F \le E \le \overline{F}$ is a splitting field over F if and only if every automorphism of \overline{F} leaving F fixed maps E onto itself and thus induces an automorphism of E leaving F fixed.
- 22. Prove the following.
 - a) Every field of characteristic zero is perfect.
 - b) Every finite field is perfect.

(2×5=10 weightage)