

QP CODE: 23124785

Reg No

Name

B.Sc DEGREE (CBCS) REGULAR / IMPROVEMENT / REAPPEARANCE EXAMINATIONS, MAY 2023

Second Semester

CORE COURSE - MM2CRT01 - MATHEMATICS - ANALYTIC GEOMETRY, TRIGONOMETRY AND DIFFERENTIAL CALCULUS

(Common for B.Sc Computer Applications Model III Triple Main, B.Sc Mathematics Model I, B.Sc Mathematics Model II Computer Science)

2017 ADMISSION ONWARDS

703CBE60

Time: 3 Hours

Max. Marks: 80

Part A

Answer any ten questions.

Each question carries 2 marks.

- 1. Derive the equation of chord of contact of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$.
- 2. Find the condition that the lines lx + my + n = 0 and $l_1x + m_1y + n_1 = 0$ to be conjugate with respect to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$.
- 3. Prove that the tangents at the extremities of a diameter of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, are parallel to the diameter conjugate to it.
- Define equi-conjugate diameters. Find the length of each equi-conjugate diameters of the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$.
- 5. Find the coordinates at the extremities of the latus rectum of a parabola $\frac{l}{r}=1+\cos\theta$.
- 6. Find the equation for a circle centered at the pole. Give an example.
- 7. Prove that $\sin 3x = 3 \sin x 4 \sin^3 x$.
- 8. Prove that $\sin h 2x = 2 \sinh x \cosh x$.
- 9. Separate into real and imaginary parts $cot(\alpha+i\beta)$.

10. If
$$y=rac{x^5}{Ax^2+2Bx+C}$$
 , show that $(Ax^2+2Bx+C)y_n+2n(Ax+B)y_{n-1}+n(n-1)Ay_{n-2}=0$ if n>5.

- 11. Determine $lim[rac{1}{x-2} rac{1}{log(x-1)}]$ as x o 2.
- 12. Evaluate $lim_{x
 ightarrow 0} (cosx)^{rac{1}{x^2}}$.

 $(10 \times 2 = 20)$

Part B

Answer any six questions.

Each question carries 5 marks.

- 13. Find the locus of the point of intersection of two tangents to the parabola $y^2 = 4ax$, which makes an angle α with one another.
- 14. Find the orthoptic locus of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 15. Show that the locus of the middle points of the chords of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ touching the ellipse $\frac{x^2}{A^2} + \frac{y^2}{B^2} = 1$ is A^2 . $\frac{x^2}{a^4} + B^2$. $\frac{y^2}{b^4} = (\frac{x^2}{a^2} + \frac{y^2}{b^2})^2$.
- 16. Show that the locus of the poles of normal chords of the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ is $\frac{a^6}{x^2}+\frac{b^6}{y^2}=(a^2-b^2)^2$.
- 17. Replace the polar equation $r=rac{4}{2\cos\theta-\sin\theta}$ by equivalent cartesian equation, and identify its graph.
- 18. Sum the series $sin lpha rac{sin(lpha+2eta)}{2!} + rac{sin(lpha+4eta)}{4!} \ldots$
- 19. Sum the series $1+ccosh\alpha+c^2cosh2\alpha+\ldots+c^{n-1}cosh(n-1)\alpha$, where c is less than unity.
- 20. Find the nth derivative of $e^{ax}cos(bx+c)$.
- 21. Find the nth derivative of $\frac{10x-21}{(2x-3)(2x+5)}$.

 $(6 \times 5 = 30)$

Part C

Answer any two questions.

Each question carries 15 marks.

22. Find th econdition that teh line 1x + my + n = 0 is a tangent to a) the parabola $y^2 = 4ax$

- b) the ellipse $rac{x^2}{a^2}+rac{y^2}{b^2}=1$ c) the hyperbola $rac{x^2}{a^2}-rac{y^2}{b^2}=1$.
- 23. Show that the locus of the intersection of perpendicular tangents to a conic is a circle.
- 24. Factorize the expression xⁿ 1

25. (a) If
$$p^2=a^2cos^2\theta+b^2sin^2\theta$$
 ,prove that $p+\frac{d^2p}{d\theta^2}=\frac{a^2b^2}{p^3}$. (b) If $y=Ax+Blogx$, show that $x^2log(\frac{x}{e})\frac{d^2y}{dx^2}-x\frac{dy}{dx}+y=0$.

(b) If
$$y=Ax+Blogx$$
, show that $x^2log(rac{x}{e})rac{d^2y}{dx^2}-xrac{dy}{dx}+y=0$.

 $(2 \times 15 = 30)$