

QP CODE: 23004011

Reg No			
Name			
ivaiiie	**************		

M Sc DEGREE (CSS) EXAMINATION, JUNE 2023

Fourth Semester

Elective - ME800402 - ALGORITHMIC GRAPH THEORY

M Sc MATHEMATICS, M Sc MATHEMATICS (SF)
2019 ADMISSION ONWARDS
A6A68D3E

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any **eight** questions.

Weight **1** each.

- 1. Define block and end block in a graph. Give examples.
- 2. Determine the order, size and degree of regularity of the n-cube, Q_n .
- 3. What is tractable problem, intractable problem?
- 4. Define a tree. Draw all trees of order 5.
- 5. Define a rooted tree. Give an example.
- 6. Define radius and diameter of a graph G. Give example.
- 7. Define flow in a network N
- 8. Define vertex disjoint u-v paths in a graph G and the term $\kappa(u,v)$, if $u,v\in V(G)$
- 9. Let l be a feasible vertex labeling of a weighted complete bipartite graph G. If H_l contains a perfect matching M', then prove that M' is a maximum weight matching of G.
- 10. State Kirkman's school girl problem

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight **2** each.

- 11. (a) Define isomorphism of two graphs. Give an example of a graph G of order 5 such that $G \cong \bar{G}$.
 - (b) Define equal graphs. Are two equal graphs isomorphic? Is the coverse true? Justify.

- 12. Explain Greedy algorithm, find its complexity
- 13. Prove that Kruskal's algorithm produces a minimum spanning tree in a non-trivial connected weighted graph
- 14. Define the distance function on a graph G. Write an algorithm to find d(u, v) for a fixed vertex u and every vertex v of G.
- 15. Write an algorithm to determine a Maximum flow and minimum cut in a network N with underlying digraph D, source s, sink t, capacity function c, and initial flow f, where f could be the zero flow.
- 16. For every graph G , show that $\kappa(G) \leq \lambda(G) \leq \delta(G)$
- 17. Prove that every r-regular bipartite multigraph, $r \ge 1$ has a perfect matching.
- 18. Prove that Petersen graph is not 1-factorable

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any **two** questions.

Weight **5** each.

- 19. a) Havel Hakimi Theorem
 - b) Determine whether the following sequence is graphical and , if so, find a graph having s as its degree sequence.

- 20. Explain Depth First Search Algorithm using an example. Find its complexity.
- 21. (a) Let N be a network with underlying digraph D, source s, sink t, capacity function c, and flow f. Let D' be the digraph with the same vertex as D and arc set

$$E(D') = \{(x,y); (x,y) \in E(D) \ and \ c(x,y) > f(x,y), \ or \ (y,x) \in E(D) \ and \ f(y,x) > 0\}$$

Prove that D' contains a (directed) s-t path if and only if D contains an f-augmenting semipath.

(b) Draw the network with underlying digraph D, source s, sink t. Vertex set $V(D) = \{s, u, v, w, x, y, t\}$. Arcs, capacity and flow of each arc, are given in the following table.

Use the Max-flow Min-Cut Algorithm to find the maximum flow and minimum cut.

Arcs	(s,u)	(s,x)	(w,s)	(u,v)	(x,v)	(x,y)	(y,w)	(y,t)	(v,t)	(w,t)
Capacity	3	4	3	2	1	3	2	1	3	5
Flow	1	4	1	1	1	3	2	1	2	1

22. Prove that a non trivial graph G has a 1-factor if and only if for every proper subset S of V(G), the number of odd components of G-S does not exceed |S|

(2×5=10 weightage)