

Reg No :

Name :

M Sc DEGREE (CSS) EXAMINATION, JUNE 2023

Fourth Semester

Elective - ME800401 - DIFFERENTIAL GEOMETRY

M Sc MATHEMATICS,M Sc MATHEMATICS (SF)
2019 ADMISSION ONWARDS
BBCCA011

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any eight questions.

Weight 1 each.

- 1. Sketch the level sets $f^{-1}(0)$ and typical values $\nabla f(p)$ of the vector field ∇f for the function $f(x_1, x_2) = x_1^2 x_2^2$ when $p \in f^{-1}(0)$.
- 2. Define an n-surface S and the tangent space S_p at a point $p \in S$. Give an example.
- 3. What is Gauss Map? Sketch the Gauss Map for 1-surface in \mathbb{R}^2
- 4. Describe the spherical image, when n = 2, of the cone $-x_1^2 + x_2^2 + x_3^2 + \ldots + x_{n+1}^2 = 0$, $x_1 > 0$ oriented by its unit normal vector field
- 5. If **X** and **Y** are parallel vector fields along a parametrized curve α , then show that $\mathbf{X} + \mathbf{Y}$ and $c\mathbf{X}$ are parallel, for all $c \in \mathbb{R}$
- 6. Define the derivative of a smooth vectorfield **X** on an open set U in \mathbb{R}^{n+1} with respect to a vector $\mathbf{v} \in \mathbb{R}_p^{n+1}$, $p \in U$. Show that $\nabla_{\mathbf{v}}(f\mathbf{X}) = (\nabla_{\mathbf{v}}f)\mathbf{X}(p) + f(p)(\nabla_{\mathbf{v}}\mathbf{X})$ where $f: U \to \mathbb{R}$ is a smooth function.
- 7. Explain a) Circle of curvature.
 - b) Center of curvature.
 - c) Radius of curvature of a plane curve at the point p.
- 8. Let U be an open set in \mathbb{R}^{n+1} and $f:U\to\mathbb{R}$ is smooth. Then for any parametrized curve $\alpha:I\to U$ evaluate $\int_{\Omega}df$.
- 9. Prove that a parametrized 1-surface is simply a regular parametrized curve.
- 10. Let $\varphi: U \to \mathbb{R}^{n+k}$ be any smooth map, U open in \mathbb{R}^n .
 - a) Define vector field along φ .
 - b) Let $p \in U$ and $\mathbf{v} \in \mathbb{R}_p^n$. Define the derivative of a smooth vector field \mathbf{X} with respect to \mathbf{v} .

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any **six** questions. Weight **2** each.

- 11. How can you obtain level sets from graph and graph from level sets? Explain the process using the level sets and graphs of the function $f(x_1, x_2, ..., x_{n+1}) = x_1^2 + x_2^2 + ... + x_{n+1}^2$ for n = 0 and n = 1.
- 12. If S is a connected n-surface in \mathbb{R}^{n+1} and $g: S \to \mathbb{R}$ is smooth and takes on only the values +1 and -1, then prove that g is a constant.
- 13. For each pair of orthogonal unit vectors $\{e_1, e_2\}$ in \mathbb{R}^3 and $a \in \mathbb{R}$, verify the great circle $\alpha(t) = (\cos at)e_1 + (\sin at)e_2$ is a geodesic in the 2-sphere $x_1^2 + x_2^2 + x_3^2 = 1$ in \mathbb{R}^3 .
- 14. Let $\alpha:[0,\pi]\to S^2$ be the half great circle in S^2 , running from the north pole $p=(0,\ 0,\ 1)$ to the south pole $q=(0,\ 0,-1)$. defined by $\alpha(t)=(sint,\ 0,\ cost)$. Show that, for $\mathbf{v}=(p,\ v_1,\ v_2,\ 0)\in S_p^2,\ P_\alpha(\mathbf{v})=(q,\ -v_1,\ v_2,\ 0)$
- 15. a) What do you mean by reparametrization of a parametrized curve.b) Are local parametrizations of plane curves unique upto reparametrization? Justify your answer.
- 16. Define length of a connected oriented plane curve. Find the length of the connected oriented plane curve $f^{-1}(c)$ oriented by $\frac{\nabla f}{||\nabla f||}$, where $f:U\to\mathbb{R}$ is given by $f(x_1,x_2)=5x_1+12x_2, U=\{(x_1,x_2):x_1^2+x_2^2<169\}, c=0$.
- 17. Let V be a finite dimensional vector space with dot product and let $L: V \to V$ be a self adjoint linear transformation on V. Let $S = \{v \in V: v \cdot v = 1\}$ and define $f: S \to \mathbb{R}$ by $f(v) = L(v) \cdot v$. Prove that if v_0 is an eigen vector of L, then f is stationary at $v_0 \in S$.
- 18. Find the normal curvature $k(\mathbf{v})$ for each tangent direction \mathbf{v} , the principal curvatures and principal curvature directions, and the Gauss-Kronecker and mean curvatures, at the point p = (1, 0, ..., 0) of the n-surface $x_1 + x_2 + ... + x_{n+1} = 1$ oriented by the outward normal vector field.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any **two** questions.

Weight **5** each.

- 19. a) Let \mathbf{X} be a smooth vector field on an open set $U \subset \mathbb{R}^{n+1}$ and let $p \in U$. Then prove that there exists an open interval I containing 0 and an integral curve $\alpha : I \to U$ of \mathbf{X} such that
 - $(i)\alpha(0)=p$
 - (ii) If $\beta: \tilde{I} \to U$ is any other integral curve of **X** with $\beta(0) = p$ then $\tilde{I} \subset I$ and $\beta(t) = \alpha(t)$ for all $t \in \tilde{I}$
 - b) Given the vector field $(p) = (p, \mathbf{X}(p))$ where $\mathbf{X}(p) = (-p)$. Then find the integral curve through an arbitrary point (1,1).
- 20. Show that each maximal geodesic on the cylinder $x_1^2 + x_2^2 = 1$ in \mathbb{R}^3 is either a vertical line, a horizontal circle, a helix or a constant.
- 21. a) Let S be an n-surface in \mathbb{R}^{n+1} , oriented by the unit normal vector field \mathbf{N} . Let $p \in S$ and $\mathbf{v} \in S_p$. Prove that $\ddot{\alpha}(t_0) \cdot \mathbf{N}(p) = L_p(\mathbf{v}) \cdot \mathbf{v}$ for every parametrized curve $\alpha : I \to S$ with $\dot{\alpha}(t_0) = \mathbf{v}$ for some $t_0 \in I$.

- b) Show that if S is an n-surface and N is a unit normal vector field on S, then the Weingarten map of S oriented by -N is the negative of the Weingarten map of S oriented by N.
- 22. a) Let S be an oriented n-surface in \mathbb{R}^{n+1} and let $p \in S$. Let \mathbf{Z} be any non-zero normal vector field on S such that $\mathbf{N} = \mathbf{Z}/\|\mathbf{Z}\|$ and

$$let \left\{ \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \right\} \ be \ any \ basis for \ S_p. \ Prove \ that \ \mathbf{K}(p) = \frac{ (-1)^n det \begin{pmatrix} \nabla_{\mathbf{v}_1} \mathbf{Z} \\ \vdots \\ \nabla_{\mathbf{v}_n} \mathbf{Z} \\ \mathbf{Z}(p) \end{pmatrix}}{\|\mathbf{Z}(p)\|^n det \begin{pmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_n \\ \mathbf{Z}(p) \end{pmatrix}}$$

b) Let S be the ellipsoid $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} + \frac{x_3^2}{c^2} = 1$ oriented by the outward normal vector field. Find the Gauss - Kronecker curvature of S.

(2×5=10 weightage)