

QP CODE: 23004009

Reg No :

Name :

M Sc DEGREE (CSS) EXAMINATION, JUNE 2023

Fourth Semester

Core - ME010402 - ANALYTIC NUMBER THEORY

M Sc MATHEMATICS,M Sc MATHEMATICS (SF)
2019 ADMISSION ONWARDS
B16B5F44

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any eight questions.

Weight 1 each.

- 1. Prove the following (a) $\phi(p^{\alpha}) = p^{\alpha} p^{\alpha-1}$ for prime p and $\alpha \ge 1$. (b) $\phi(mn) = \phi(m)\phi(n)(\frac{d}{\phi(d)})$, where d = (m,n).
- 2. Define the divisor function $\sigma_{\alpha}(n)$. Show that it is multiplicative.
- 3. Define average order, big oh notation and asymptotic equality of arithmetical functions.
- 4. State Abel's identity and deduce Euler's summation formula from it.
- 5. Let $\{a(n)\}$ be a nonnegative sequence such that $\sum_{n \le x} a(n) \left[\frac{x}{n}\right] = x \log x + O(x)$ for all $x \ge 1$. Then prove that $\forall x \ge 1$, we have $\sum_{n \le x} \frac{a(n)}{n} = \log x + O(1)$.
- 6. (a) If $a \equiv b \pmod{m}$ and $a \equiv b \pmod{m}$ where (m, n) = 1 then prove that $a \equiv b \pmod{mn}$. (b) If $a \equiv b \pmod{m}$ and if $0 \leq |b - a| < m$ then prove that a = b.
- 7. Prove that if a prime p does not divide a then $a^{p-1} \equiv 1 \pmod{p}$.
- 8. A prime p satisfies $(p-1)! \equiv -1 \pmod{p}$. Is the converse true.
- 9. For every odd prime p, Prove that $(-1|p) = (-1)^{\frac{p-1}{2}} = \begin{cases} 1 & \text{if } p \equiv 1 \pmod{4} \\ -1 & \text{if } p \equiv 3 \pmod{4}. \end{cases}$
- 10. (a) Define the exponent of a modulo m.
 - (b) Let $m \ge 1$ and (a, m) = 1. Then prove that $a^k \equiv a^k \pmod{m}$ if and only if $k \equiv k \pmod{m}$, where $k \equiv k \pmod{m}$.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any six questions.

Weight 2 each.

11. Show that two lattice points (a, b) and (m, n) are mutually visible if and only if a - m and b - n are relatively prime

- 12. For $x \ge 2$, prove that $\sum_{p \le x} \left[\frac{x}{p} \right] \log p = x \log x + O(x)$, where the sum is extended over all primes $\le x$.
- 13. If $n \geq 1$, show that $\frac{1}{6} n \log n < P_n < 12(n \log n + n \log \frac{12}{e})$, where P_n denotes the n^{th} prime
- 14. Find a constant A such that $\sum_{p \leq x} \frac{1}{p} = \log \log x + A + O(\frac{1}{\log x}), \forall x \geq 2$.
- 15. Assume (a,m)=d and suppose that d|b. Then prove that the linear congruence $ax\equiv b(modm)$ has exactly d solutions modulo m given by $t,t+\frac{m}{d},t+2\frac{m}{d},\ldots t+(d-1)\frac{m}{d}$ where t is a solution unique modulo $\frac{m}{d}$ of the linear congruence $\frac{a}{d}x\equiv \frac{b}{d}(mod\frac{m}{d})$.
- 16. Assume m_1, \ldots, m_r are positive integers, relatively prime in pairs. Let b_1, \ldots, b_r be arbitrary integers. Then prove that the system of congruences $x \equiv b_1(modm_1), \ldots, x \equiv b_r(modm_r)$ has exactly one solution modulo m_1, \ldots, m_r .
- 17. Define Legendre's symbol (n|p). Prove that it is a completely multiplicative function.
- 18. Let p be an odd prime. Prove that there are exactly $\phi(p-1)$ primitive roots mod p.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.

- 19. (a) State and prove the theorem which give the recursion formulas for f^{-1} , where f is an arithmetical function with $f(1) \neq 0$.
 - (b) Prove that if both g and f * g are multiplicative then f is multiplicative.
- 20. Show that the following relations are logically equivalent.
 - $(a)\lim_{x\to\infty} \frac{\pi(x)logx}{x} = 1.$
 - (b) $\lim_{x\to\infty}\frac{\pi(x)\log\pi(x)}{x}=1.$
 - (c) $\lim_{n\to\infty} \frac{P_n}{n \log n} = 1$, where P_n denotes the n^{th} prime.
- 21. (a) Let f be a polynomial with integer coefficients, let $m_1, m_2, ..., m_r$ be positive integer relatively prime in pairs, and let $m = m_1 m_2$... m_r . Prove that the congruence $f(x) \equiv 0 \pmod{m}$ has a solution if and only each of the congruence $f(x) \equiv 0 \pmod{m}$, i=1,2,...,r, has a solution.

Also show that if v(m) and $v(m_i)$ denote the number of solutions of $f(x) \equiv 0 \pmod{m}$ and $f(x) \equiv 0 \pmod{m_i}$, i=1,2,...,r respectively, then $v(m)=v(m_1)v(m_2)...v(m_r)$.

- (b) Prove that for a given any integer k > 0 there exists a lattice point (a, b) such that none of the lattice points (a+r, b+s), 0 < r, s < k is visible from the orgin.
- 22. Derive a formula for (p|q)(q|p), where p and q are distinct odd primes.

(2×5=10 weightage)