

QP CODE: 23004008

Reg No

:

Name

•

M Sc DEGREE (CSS) EXAMINATION, JUNE 2023

Fourth Semester

Core - ME010401 - SPECTRAL THEORY

M Sc MATHEMATICS,M Sc MATHEMATICS (SF)
2019 ADMISSION ONWARDS
CA43BFC1

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any **eight** questions.

Weight **1** each.

- 1. Define Canonical mapping of a normed space X into X''. Prove that Canoical mapping is linear.
- 2. If (x_n) and (y_n) are sequences in the same normed space X, show that $x_n \stackrel{w}{\to} x$ and $y_n \stackrel{w}{\to} y$ implies $x_n + y_n \stackrel{w}{\to} x + y$.
- 3. Define contraction on a metric space. State Banach fixed point Theorem.
- 4. Define characteristic equation and eigenvalues of an $n \times n$ matrix.
- 5. Let X be a complex Banach space, $T \in B(X,X)$ and $\lambda, \mu \in \rho(T)$. Then prove that $R_{\mu} R_{\lambda} = (\mu \lambda)R_{\mu}R_{\lambda}$.
- 6. Define a commutative algebra with identity. Give an example.
- 7. Define totally bounded sets. Is a totally bounded set of a metric space is bounded?
- 8. Let *T* and *S* be linear operators in a normed space *X*. If *T* is compact and *S* is bounded prove that *TS* is compact.
- 9. Let T_1 , T_2 , T be bounded self-adjoint linear operators on a complex Hilbert space H and $\alpha \geq 0$. If $T_1 \leq T_2$, prove that $T_1 + T \leq T_2 + T$ and $\alpha T_1 \leq \alpha T_2$.
- 10. Let P_1 and P_2 be projections defined on a Hilbert space H and let $Y_1 = P_1(H)$ and $Y_2 = P_2(H)$. If the difference $P = P_2 P_1$ is a projection, prove that $P_2P_1 = P_1P_2 = P_1$.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight **2** each.

11. Prove that a sequence (f_n) of bounded linear functionals on a Banch space X is weak convergent if and only if (A) The sequence $(\|f_n\|)$ is bounded.

- (B) The sequence $(f_n x)$ is cauchy for every x in a total subset M of X.
- 12. Let $T: \mathcal{D}(T) \to Y$ be a bounded linear operator with domain $\mathcal{D}(T) \subset X$, where X and Y are normed spaces. Prove that (a) If $\mathcal{D}(T)$ is a closed subset of X, then T is closed.
 - (b) If T is closed and Y is complete, then $\mathcal{D}(T)$ is a closed subset of X.
- 13. Let $T: X \to X$ be a bounded linear operator on a complex normed space X and $\lambda \in \rho(T)$. Then prove that the resolvent operator $R_{\lambda}(T)$ is defined on the whole space X.
- 14. Find the eigenvalues and eigenvectors of the matrix $\begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$.
- 15. Let A be a complex Banach algebra with identity. Then show that the set G of all invertible elements of A is an open subset of A.
- 16. Let X and Y be normed space and $T: X \to Y$ a linear operator. State and prove the characterisation theorem for T to become a compact linear operator.
- 17. Let $T: H \to H$ be a bounded self-adjoint linear operator on a complex Hilbert space $H \neq \{0\}$. Prove that $m = \inf_{\|x\|=1} \langle Tx, x \rangle$ and $M = \sup_{\|x\|=1} \langle Tx, x \rangle$ are spectral values of T_x
- 18. Let P_1 and P_2 are projections on a Hilbert space H. Prove that the product $P=P_1P_2$ is a projection on H if and only if P_1 and P_2 commute. Also prove that P projects H onto $Y=Y_1\cap Y_2$, where $Y_j=P_j(H),\ (j=1,2)$.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any **two** questions.

Weight **5** each.

- 19. State and prove Open Mapping Theorem
- 20. Let $T \in B(X, X)$, where X is a complex Banach space. Then:

 (a) If ||T|| < 1, prove that $(I T)^{-1}$ exists as a bounded linear operator on the whole space X and $I T)^{-1} = \sum_{i=0}^{\infty} I + T + T^2 + \cdots$
 - (b) Prove that the spectrum of T is closed.
- 21. Let $T: X \to X$ be a compact linear operator on a normed space X, and $\lambda \neq 0$. Prove that there exists a smallest integer r such that from n = r onwards the null spaces $\mathcal{N}(T^n_\lambda)$ are all equal and the ranges $T^n_\lambda(X)$ are all equal and if r > 0, the following inclusions are proper.

$$\mathcal{N}(T_{\lambda}^0) \subset \mathcal{N}(T_{\lambda}) \subset \mathcal{N}(T_{\lambda}^2) \subset \cdots \subset \mathcal{N}(T_{\lambda}^r)$$
 and $T_{\lambda}^0(X) \supset T_{\lambda}(X) \supset T_{\lambda}^2(X) \supset \cdots \supset T_{\lambda}^r(X)$.

- Prove that eigen vectors corresponding to different eigenvalues of a bounded self-adjoint linear operator on a complex Hilbert space are orthogonal.
 - 2. State and prove a characterization of the resolvent set of a bounded self-adjoint linear operator on a complex Hilbert space.