

QP CODE: 23127310

Reg No	 ******************************
Mamo	

B.Sc DEGREE (CBCS) REGULAR / IMPROVEMENT / REAPPEARANCE EXAMINATIONS, OCTOBER 2023

Third Semester

Core Course - MM3CRT01 - CALCULUS

Common to B.Sc Computer Applications Model III Triple Main, B.Sc Mathematics Model I, B.Sc Mathematics Model II Computer Science

2017 Admission Onwards

AB9FB874

Time: 3 Hours

Max. Marks: 80

Part A

Answer any **ten** questions.

Each question carries **2** marks.

- 1. Show that $y = \log x$ is everywhere conve downwards.
- 2. Find the radius of the curvature $y^2 = x^3$ at the point (4.8).
- 3. Define centre of curvature at any point p of a curve.
- 4. Find the envelope of the family of the semi-cubical parabola $y^2 = (x + a)^2$.
- 5. Evaluate f_{xy} if $f(x,y) = \sqrt{x^2 + y^2}$
- Find $\frac{dw}{dt}$ if w = xy + z, $x = \cos t$, $y = \sin t z = t$
- 7. State the second derivative test for local maximum values of a function f(x,y) at (a,b).
- 8. Evaluate the volume of the solid of cross sectional area $A(x)=5x^2 \,$ from x=0 to x=1.
- 9. Find the length of the curve $y=x^{rac{3}{2}}$ from $x=0 ext{ to } x=4$.
- 10. The line segment x=1-y; $0 \le y \le 1$ is revolved about the Y-axis to generate the cone. Find its lateral surface area (which excludes base area).
- 11. Find the average value of $f(x,y)=\sin(x+y)$ over the rectangle $0\leq x\leq \pi;\ 0\leq y\leq \pi.$

12. Express the spherical coordinate (ρ,ϕ,θ) in terms of rectangular coordinates (x,y,z) (10×2=20)

Part B

Answer any six questions.

Each question carries 5 marks.

- 13. Using Maclaurin's series expand $\frac{e^x}{\cos x}$ around x=0.
- 14. Expand $\log(x+k)$ in powers of x using Taylor's series.

15. If
$$u=\ln rac{x^2+y^2}{x+y}$$
 , prove that $xrac{\partial u}{\partial x}+yrac{\partial u}{\partial y}=1$

- 16. Find the absolute maximum and minimum values $f(x,y)=2+2x+2y-x^2-y^2$ on the triangular plate in the first quadrant bounded by the lines $x=0,\ y=0,\ y=9-x.$
- 17. The region between the curve $y=\sqrt{x}$; $0\leq x\leq 4$ and the X-axis is revolved about the X-axis to generate a solid . Find its volume.
- 18. Find the volume of the solid generated by revolving each region in the first quadrant bounded above by the curve $y=x^2$, below by the X-axis and on the right by the line x=1, about the line x=-1.
- 19. Sketch the region of integration and write an equivalent double integral of $\int_0^2 \int_{x^2}^{2x} \left(4x+3\right) \, dy \, dx \quad \text{with the order of integration reversed.}$
- 20. Find the average value f(x, y, z) = xyz over the cubical region D bounded by the coordinate planes x = 2, y = 2 and z = 2 in the first octant.
- 21. Find the Jacobian $J(\rho,\phi,\theta)$ for the transformation $x=\rho\sin\phi\cos\theta, y=\rho\sin\phi\sin\theta, z=\rho\cos\phi$.

 $(6 \times 5 = 30)$

Part C

Answer any two questions.

Each question carries 15 marks.

- 22. Find all the asymptotesof the curve $y^3 5xy^2 + 8x^2y 4x^3 3y^2 + 9xy 6x^2 + 2y 2x 1 = 0$
- 23. (a). Find the positive numbers x,y,z such that xyz=64 and x+y+z is minimum. (b). The plane x+y+z=1 cuts the cylinder $x^2+y^2=1$ in an ellipse. Find the

points on the ellipse that lie closest to and farthest from the origin.

- 24. (a).The region enclosed by the X-axis and the parabola $y=2x-x^2$ is revolved about the vertical line x=-1 to generate a solid. Find the volume of the solid using shell method.
 - (b). Find the length of the curve $y=rac{x^3}{12}+rac{1}{x} ext{ from } x=0 ext{ to } x=4.$
- 25. (a). Evaluate $\int_0^1 \int_0^{1-x^2} \int_3^{(4-x^2-y)} \, x \, dz \, dy \, dx$
 - (b). Evaluate the cylindrical coordinate integral $\int_0^{2\pi} \int_0^1 \int_r^{\sqrt{2-r^2}} dz \, r \, dr \, d\theta$ (2×15=30)