

QP CODE: 23144636

Reg No :

M Sc DEGREE (CSS) EXAMINATION, NOVEMBER 2023

Third Semester

Faculty of Science

CORE - ME010303 - MULTIVARIATE CALCULUS AND INTEGRAL TRANSFORMS

M Sc MATHEMATICS,M Sc MATHEMATICS (SF)
2019 ADMISSION ONWARDS
59928569

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any eight questions.

Weight 1 each.

- Define Exponential Fourier transform, Fourier sine transform, Fourier cosine transform, Laplace transform and Mellin transform.
- 2. Define convolution of f and g. Also show by an example that Lebesgue integrability of f and g alone will not give a convolution integral of f and g.
- 3. Show that if $\mathbf{F}(t) = \mathbf{f}(\mathbf{c} + t\mathbf{u})$, then $\mathbf{F}'(t) = \mathbf{f}'(\mathbf{c} + t\mathbf{u}; \mathbf{u})$, if either derivative exists.
- 4. Show that the existence of total derivative of a function $\mathbf{f}: S \to \mathbf{R}^m, S \subseteq \mathbf{R}^n$ at $\mathbf{c} \in S$, implies the existence of directional derivative $\mathbf{f}'(\mathbf{c}; \mathbf{u}) \ \forall \ \mathbf{u} \in \mathbf{R}^n$.
- 5. Let $\mathbf{f}: S \to \mathbf{R}^m$ be differentiable at each point of an open connected subset S of \mathbf{R}^n . Show that if $\mathbf{f}'(\mathbf{c}) = 0; \forall c \in S$, then \mathbf{f} is constant on S.
- 6. Let $f(z)=e^z$. Verify that $J_f(z)
 eq 0$ for all zin C but f is not one-one.
- 7. State inverse function theorem.
- 8. Define a Stationary point and a Saddle point.
- 9. Define flip of a linear operator. Give an example.
- 10. Define differential form of order k. Write standard presentation of $\omega = x_1 dx_2 \wedge dx_1 \wedge dx_3 x_2 dx_3 \wedge dx_2 \wedge dx_1$.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight 2 each.

- 11. Let f be a real valued and continuous function on [a,b]. Then for every $\epsilon>0$, there is a polynomial p, such that $|f(x)-p(x)|<\epsilon$ for every x in [a,b].
- 12. Find the Fourier series for $f(x)=rac{x^2}{8}, 0\leq x\leq 2\pi$.
- 13. a. Define matrix of linear function.
 - b. Show that if S,T are linear functions with domain of S containing range of T the matrix of composite function SoT, is the product of matrices of linear functions S,T.
- 14. Compute the gradient vector abla f(x,y) at those points $(x,y)\in \mathbf{R}^2$ if a. $f(x,y)=x^2y^2log(x^2+y^2)$ if $(x,y)\neq (0,0), f(0,0)=0$. b. $f(x,y)=xysin(x^2+y^2)$
- 15. Define the Jacobian determinant of a function f on R^n . If f=u+iv is a complex valued function with a derivative at a point z in C, Prove that $J_f(z)=|f'(z)|^2$
- 16. (a) Define Quadratic form. When will you say that a quadratic form is positive definite. (b) Find the saddle point of the function $f(x,y)=x^3+y^3+3x^2-3y^2-8$
- 17. For every $f \in C(I^k)$, show that $L(f) = L^{'}(f)$.
- 18. $(a)If\ \gamma(t)=(acost,bsint),\ 0\leq t\leq 2\pi, then\ find\ \int_{\gamma}xdy\ and\ \int_{\gamma}ydx.$ $(b)If\ \Phi(r,\theta,\phi)=(x,y,z)\ where\ x=rsin\theta cos\phi,\ y=rsin\theta sin\phi,\ z=rcos\theta\ and\ D\ is\ the 3-cell$ $defined\ by\ 0\leq r\leq 1,\ 0\leq \theta\leq \pi,\ 0\leq \phi\leq 2\pi, then\ show\ that\ \int_{\Phi}dx\wedge dy\wedge dz=\frac{4\pi}{3}.$ $(6\times 2=12\ weightage)$

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.

- 19. Prove that the Fourier transform of a concolution f*g is the product of the convolutions of f and of g.
- 20. State and prove the matrix form of the chain rule.
- 21. (a) If both partial derivatives $D_r f$ and $D_k f$ exist in an n-ball B(c) and if both $D_{r,k} f$ and $D_{k,r} f$ are continuous at c. Prove that $D_{r,k} f(c) = D_{k,r} f(c)$.
 - (b) If both partial derivatives D_rf and D_kf exist in an n- ball $B(c;\delta)$ and if both are differentiable at c . Prove that $D_{r,k}f(c)=D_{k,r}f(c)$.

- 22. Suppose K is a compact subset of R^n and $\{V_\alpha\}$ is an open cover of K. Show that there exist functions $\psi_1, \psi_2, \ldots, \psi_s \in C(R^n)$ such that
 - a) $0 \le \psi_i \le 1$ for $1 \le i \le s$
 - b) Each ψ_i has its support in some V_{α} .
 - $c)\; \psi_1(x) + \psi_2(x) + \ldots + \psi_s(x) = 1, \; \forall x \in K.$

(2×5=10 weightage)