

QP CODE: 23144845

Reg No	gi di man	****************
Name	. 18 B. 18 C.	

M Sc DEGREE (CSS) EXAMINATION, NOVEMBER 2023

Third Semester

Faculty of Science

CORE - CH500303 - SPECTROSCOPIC METHODS IN CHEMISTRY

M Sc CHEMISTRY, M Sc ANALYTICAL CHEMISTRY, M Sc APPLIED CHEMISTRY, M Sc POLYMER CHEMISTRY

2019 ADMISSION ONWARDS

2D1109D2

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any **eight** questions.

Weight 1 each.

- 1. How will you distinguish stereo isomers using ORD curves?
- 2. How will you estimate ring strain in IR spectra? Illustrate with an example.
- 3. Explain the presence of two C=O stretching frequencies in methyl ester of o-chloro benzoic acid.
- 4. Why Tetramethylsilane is used as the internal standard for calibrating chemical shift in NMR spectroscopy?
- 5. Why C-13 nuclei has Nuclear Magnetic Resonance while C-12 does not?
- 6. What is the splitting pattern in ABC and AMX type coupling?
- 7. Explain the term coupling constant. What is its unit?
- 8. Explain the following (a) Off resonance decoupling (b) lanthanide shift reagents.
- 9. Explain the strong peaks at m/e 91 and m/e 65 in Toluene.
- 10. Discuss the completion of pinacol-pinacolone rearrangement reaction using IR spectroscopy.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight **2** each.

11. Describe Woodward - Fieser rule for calculating λmax in dienes

- 12. A compound with molecular formula C3H6O can exist in two tautomeric forms A and B. The compounds shows prominent bands at (a) 1710cm-1 (b) 3250cm-1 and (c) 1630cm-1. Give the structure foe A and B for the above data.
- 13. Write a short note on NOE
- 14. Explain the principle and working of MRI technique.
- 15. An organic compound ($C_{13}H_{10}O$) showed the following NMR data: Proton: δ 7.45, 7.6, 7.8. Carbon-13: δ 128, 130, 132, 138 and 197. DEPT-90 showed three positive signals. Identify the molecule and assign the data.
- 16. Write briefly on MALDI and TOF in mass spectrometry.
- 17. Ethyl butanoate in its mass spectrum shows two characteristic peaks due to odd electron ions at m/z = 88 and 60 and an abundant ion at m/z = 71. Explain the fragmentation.
- 18. An organic compound with molecular formula C₄H₈O₃ gives the following spectral data. Deduce the structure.

IR spectrum - 1705, 3410 cm $^{-1}$ 1 H NMR - $_{\delta}$ 4.15 (1H, sextet, J=7 Hz), 2.35 (2H, d, J=7Hz) and 1.2 (3H, d, J=7 Hz) ppm. Spectrum run in D $_{2}$ O.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any **two** questions.

Weight **5** each.

- 19. What is Cotton effect? Write down the applications. What is the importance of Cotton curves and plain curves.
- 20. Briefly explain about 2D-NMR with Suitable example.
- 21. Write on the theory and applications of a) HRMS b) MSMS c) LC-MS d) GC-MS.
- 22. (a) A compound with molecular formula C₄H₈O₃ gave the following spectral data. Deduce the structure.

IR: 1120, 1745 cm⁻¹

¹H NMR: δ 4.05 (2H, s), 3.8 (3H, s) and 3.5 (3H, s) ppm

(b) Acetone reacts with two molar equivalents of benzaldehyde in presence of KOH and ethanol. Propose a structure for the product. The spectral data of the product are:

¹³C NMR : δ 125, 128, 129, 130.5, 134.5, 144 and 185 ppm

DEPT 135 -NIL

DEPT 90 - δ 125, 128, 129, 130.5 and 144 ppm

DEPT 45-δ 125, 128, 129, 130.5 and 144 ppm