

QP CODE: 23135626

Reg No

......

Name

B.Sc DEGREE (CBCS) REGULAR / REAPPEARANCE EXAMINATIONS, OCTOBER 2023

Fifth Semester

CORE COURSE - MM5CRT03 - ABSTRACT ALGEBRA

Common for B.Sc Mathematics Model I & B.Sc Mathematics Model II Computer Science 2017 Admission Onwards

C91B8DE2

Time: 3 Hours

Max. Marks: 80

Part A

Answer any **ten** questions.

Each question carries **2** marks.

- 1. State whether the set \mathbb{Z}^+ under multiplication is a group. Justify.
- 2. Define left identity element in a group and left inverse of an element in a group.
- 3. Define a cyclic group.
- 4. Define a **permutation of a set**. Compute $\sigma \tau$ where σ and τ are permutations given by $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 5 & 3 & 1 \end{pmatrix} \text{ and } \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 2 & 1 \end{pmatrix}.$
- 5. Define the **orbits** of a permutation of a set.
- 6. Let H be a subgroup of a group G. Define the index (G:H) of H in G. Give a formula to compute (G:H) when G is finite.
- 7. Define the **Cartesian product of sets** S_1, S_2, \dots, S_n . Write the number of elements in the Cartesian product of the sets $\{0, 1\}$ and $\{0, 1, 2\}$.
- 8. Check whether $f:(GL_n(\mathbb{R}),.) o (\mathbb{R}^*,.)$ defined by f(A)=det(A) is a group homomorphism or not.
- 9. If $\phi:G o G'$ is a group homomorphism then show that $\phi(e)=e'$ where e and e' are identity elements of G and G' respectively.
- Compute the product in the given ring a) (2,3) (3,5) in $Z_5 \times Z_9$ b) (-3,5) (2,-4) in $Z_4 \times Z_{11}$
- 11. Find all units in Z₁₄.

12. Give an example to show that a factor ring of an integral domain may be a field.

 $(10 \times 2 = 20)$

Part B

Answer any **six** questions.

Each question carries 5 marks.

- 13. Determine whether st defined on \mathbb{Z}^+ by $ast b=a^b$ is a) commutative b) associative.
- 14. Check whether $\langle \mathbb{Q}, +
 angle$ and $\langle \mathbb{Z}, +
 angle$ under the usual addition are isomorphic.
- 15. State and prove Division Algorithm for \mathbb{Z} .
- 16. Let G and G' be groups and let $\phi:G\to G'$ be a one-to-one function such that $\phi(xy)=\phi(x)\phi(y)$ for all $x,y\in G$. Then show that $\phi[G]$ is a subgroup of G' and ϕ provides an isomorphism of G with $\phi[G]$.
- 17. If $n \geq 2$, then prove that the collection of all even permutations of $\{1, 2, 3, \dots, n\}$ forms a subgroup of order $\frac{n!}{2}$ of the symmetric group S_n .
- 18. Let $\phi:G o G'$ is a group homomorphism, if N is a normal subgroup of G' show that $\phi^-1(N)$ is a normal subgroup of **G**.
- 19. Define maximal normal subgroup of a group. Prove that $\, {\bf M} \,$ is a maximal normal subgroup of a group $\, {\bf G} \,$ if and only if the factor group $\, G/M \,$ is simple.
- 20. a) Mark each of the following true or false.
 - i) Every field is an integral domain
 - ii) The characteristic of nZ is n
 - b) Prove that Z_p is a field if p is a prime.
- 21. Show that if R, R' and R'' are rings and if $\phi: R \to R'$ and $\tau: R' \to R''$ are homomorphism, then the composite function $\tau \phi: R \to R''$ is a homomorphism.

 $(6 \times 5 = 30)$

Part C

Answer any two questions.

Each question carries 15 marks.

- 22. Find all subgroups of \mathbb{Z}_{36} and draw the subgroup diagram.
- 1. Let H be a subgroup of a group G. Let the relation \sim_R be defined on G by $a\sim_R b$ if and only if $ab^{-1}\in H$. Then show that \sim_R is an equivalence relation on G. What is the cell in the corresponding partition of G containing $a\in G$?

- 2. Let H be a subgroup of a group G. Then define the left and right cosets of H containing $a\in G$.
- 3. Let H be the subgroup $<\mu_1>=\{\rho_0,\mu_1\}$ of S_3 . Find the partitions of S_3 into left cosets of H.
- 24. State and prove fundamental homomorphism theorem.
- 25. a) Prove that the divisors of 0 in Z_n are those nonzero elements that are not relatively prime to n .
 - b) Find the divisors of Z_{16}
 - c) Prove that Z_p , where p is prime has no divisors of $\ 0.$

 $(2 \times 15 = 30)$