

QP CODE: 23135620

Reg No

:

Name

B.Sc DEGREE (CBCS) REGULAR / REAPPEARANCE EXAMINATIONS, OCTOBER 2023

Fifth Semester

CORE COURSE - MM5CRT01 - MATHEMATICAL ANALYSIS

Common for B.Sc Mathematics Model I, B.Sc Mathematics Model II Computer Science & B.Sc Computer Applications Model III Triple Main

2017 Admission Onwards

000B74C6

Time: 3 Hours

Max. Marks: 80

Part A

Answer any ten questions.

Each question carries 2 marks.

- 1. Prove that the set of all integers Z is denumerable.
- 2. Determine the set $A=\{x\in R: |2x+3|<7\}$?
- $^{3.}$ If t>0 prove that there exist an $n_{t}\in N$ such that $0<rac{1}{n_{t}}< t$
- 4. Justify the validity of the following statement with proper reasoning "A positive real number is rational then its decimal expansion is periodic".
- 5. Show that $lim(\frac{1}{n} \frac{1}{n+1}) = 0$.
- 6. Find $\lim ((2+\frac{1}{n})^2)$.
- 7. Use the recurrance relation of nth term of a sequence that converges to \sqrt{a} to find the value of $\sqrt{2}$ correct to 4 decimal places.
- 8. Give an example of an unbounded sequence that has a convergent subsequence. Explain.
- 9. Prove that a monotone sequence of real numbers is properly divergent if and only if it is bounded.
- 10. Using Comparison test, discuss the convergence of $\sum \frac{1}{n(n+1)}$

- 11. State Abel's test for the convergence of series.
- 12. Show that $\lim_{x\to 0}(x+sgn(x))$ do not exist.

 $(10 \times 2 = 20)$

Part B

Answer any six questions.

Each question carries 5 marks.

- 13. Prove that $a < b \iff a^2 < b^2 \iff \sqrt{a} < \sqrt{b}, a, b \ge 0$,
- 14. State and prove characterisation of intervals theorem.
- 15. Using definition of limits, prove that $\lim (\frac{3n+2}{n+1}) = 3$.
- 16. Let $X = (x_n)$ and $Y = (y_n)$ be sequences of real numbers that converges to x and y respectively and c ϵ **R**. Prove that the sequences cX converges to cx.
- 17. Prove that every contractive sequence is Cauchy and hence is convergent.
- 18. State and prove the comparison test for the convergence of series. Using this test, show that $\sum_{1}^{\infty} \frac{1}{n^2+n}$ is convergent.
- 19. If Σa_n is a convergent series of real numbers then is it necessary that $\Sigma rac{\sqrt{a_n}}{n}$ is convergent?
- Evaluate the following one-sided limits

(a)
$$\lim_{x \to 1^+} \frac{x}{x-1} (x \neq 1)$$
.

(b)
$$\lim_{x \to 0^+} \frac{(x+2)}{\sqrt{x}} (x>0)$$

21. Let $A\subseteq \mathscr{R}, f,g:A\to \mathscr{R}, c\in \mathscr{R}$ be a cluster point of A. If $f(x)\leq g(x)$ for all $x \in A, x \neq c$. Then prove the following

(a) If
$$\lim_{x\to a}f=\infty$$
, then $\lim_{x\to a}g=\infty$

(a) If
$$\lim_{x \to c} f = \infty$$
, then $\lim_{x \to c} g = \infty$.
 (b) If $\lim_{x \to c} g = -\infty$, then $\lim_{x \to c} f = -\infty$.

 $(6 \times 5 = 30)$

Part C

Answer any two questions.

Each question carries 15 marks.

22. Prove that there exist a real number x such that $x^2=2$?

- 23. (a) State and prove Monotone Convergence Theorem.
 - (b) Let Y = (y_n) be the sequence defined as $y_1 = 1$ and $y_{n+1} = \frac{2y_n + 3}{4}$, $n \ge 1$. Prove that $\lim Y = \frac{3}{2}$.
- 24.
- 1. State and prove Rearrangement Theorem.
- 2. If Σa_n is convergent, then prove that any series obtained from it by grouping terms is also convergent to the same value.
- 25. (a) Let $A\subseteq \mathscr{R}$, $f:A\to \mathscr{R}$ and let $c\in \mathscr{R}$ be a cluster point of A. If $a\le f(x)\le b$ for all $x\in A, x\ne c$, and if $\lim_{x\to c}f$ exists,Then prove that $a\le \lim_{x\to c}f\le b$.
 - (b) Check whether the following limits exist or not. Give explanations
 - (1) $\lim_{x\to 0} sinx$ (2) $\lim_{x\to 0} \left(\frac{cosx-1}{x}\right)$

 $(2 \times 15 = 30)$