

QP CODE: 23129056

Reg No :

B.Sc DEGREE (CBCS) REGULAR / REAPPEARANCE EXAMINATIONS, OCTOBER 2023

Fifth Semester

CORE COURSE - PH5CRT06 - CLASSICAL AND QUANTUM MECHANICS

Common for B.Sc Physics Model I, B.Sc Physics Model II Applied Electronics, B.Sc Physics Model II Computer Applications & B.Sc Physics Model III Electronic Equipment Maintenance

2017 Admission Onwards

1022209A

Time: 3 Hours

Max. Marks: 60

Part A

Answer any **ten** questions.

Each question carries **1** mark.

- 1. Describe the term configuration space.
- 2. What does a Hamiltonian signify?
- 3. Write down the Hamilton's canonical equations of motion.
- 4. Write down one advantage of using Hamiltonian formulism.
- 5. What are the features of a blackbody?
- 6. Explain the term matter wave.
- 7. What are eigen functions and eigen values?
- 8. Write down the Heisenberg's commutation rules.
- 9. If an operator A is Hermitian, show that the operator B=iA is anti Hermitian.
- 10. Write down the three-dimensional time dependent Schrödinger equation for a particle moving in a potential.
- 11. Brief the essential requirements on a wave function.
- 12. What do you meant by Stationary State?

 $(10 \times 1 = 10)$

Part B

Answer any **six** questions.

Each question carries **5** marks.

- 13. Discuss whether the constraints are holonomic or non-holonomic, also write down the force of constraint in each case.
 - a) A bead on a circular wire.
 - b) A pendulum with variable length
 - c) a particle placed on the surface of a sphere.
- 14. What do you understand by cyclic coordinates? Show that the generalized momentum corresponding to a cyclic coordinate is a constant of motion.
- 15. Obtain the Hamiltonian H and the Hamilton's equations of motion of a linear harmonic oscillator.
- 16. The photoelectric threshold for a certain metal is 300 nm. Estimate the maximum energy of the electrons emitted by a radiation of wavelength 200 nm.
- 17. We do not consider wave nature of particles in classical mechanics. Why?
- 18. Explain the importance of operators in quantum mechanics.
- Distinguish between uncertainty in a quantum system and the error in classical observations.
- 20. Discuss the admissibility conditions on wave function.
- 21. Write down the orthogonality condition for eigen functions.

 $(6 \times 5 = 30)$

Part C

Answer any two questions.

Each question carries 10 marks.

- 22. Define generalized coordinates. How are they different from the ordinary coordinates? Discuss the transformation of Cartesian coordinates to polar coordinates and spherical polar coordinates and vice versa.
- 23. What is compton effect and derive the expression for compton shift?
- 24. What is meant by matter waves ? Give experimental evidence in support of the concept of these waves .
- 25. Discuss the method of box normalization. Obtain the eigen values and normalized eigen functions of a particle confined to a one dimensional rectangular box.

 $(2 \times 10 = 20)$