

QP CODE: 23144640

Reg No	*			
Name		***************************************		

M Sc DEGREE (CSS) EXAMINATION, NOVEMBER 2023

Third Semester

Faculty of Science

CORE - ME010305 - OPTIMIZATION TECHNIQUE

M Sc MATHEMATICS,M Sc MATHEMATICS (SF)
2019 ADMISSION ONWARDS
0181AB58

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any **eight** questions.

Weight **1** each.

- 1. Define degenerate basic feasible solution of an LPP.
- 2. Write a short note on Applications of Duality.
- 3. If an optimal solution of Minf(X) subject to $X \in S_F$ exist and T_F is nonempty. Prove that optimal solution of Minf(X) subject to $X \in T_F$ and Minf(X) subject to $X \in [T_F]$ exist and optimal solution of Minf(X) subject to $X \in S_F$ is a lower bound for Minf(X) subject to $X \in T_F$ and Minf(X) subject to $X \in [T_F]$.
- 4. What is a Pruned and fathomed solution of an ILPP?
- 5. Define the following with suitable example.
 - (i) Directed graph (ii) Circuit (iii) Tree
- 6. Define spanning tree with example.
- 7. What you mean by critical path method.
- 8. Define the terms (i) stationary point (ii) global optimum (iii) monotonic increasing sequence.
- 9. Derive Taylor's series.
- 10. Write short note about perturbation vector.

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any six questions.

Weight 2 each.

- 11. Show that all the basic solutions of the following LP are infeasible. Maximize $z=x_1+x_2$, Subject to $x_1+2x_2\leq 6, 2x_1+x_2\geq 16, x_1\geq 0, x_2\geq 0$.
- 12. Write the dual of the following LP problem and verify that the dual of the dual is primal. Minimize $6x_1+3x_2-2x_3$ subject to $3x_1+4x_2+x_3\geq 5, 6x_1-3x_2+x_3\geq 2$ and $x_1,x_2,x_3\geq 0$.
- 13. Solve graphically: Min $f(X)=2x_1+3x_2$ subject to $8x_1-4x_2\geq 7, 3x_1+x_2\leq 5, x_1\geq 0, x_2\geq 0$.
- 14. Solve the Either Or problem: Maximise $2x_1 + 5x_2$ subject to $0 \le x_1 \le 8, 0 \le x_2 \le 8$ and $4 x_1 \ge 0$ or $4 x_2 \ge 0$.
- 15. What you mean by goal programming.

 A factory can manufacture two products A and B. The profit on a unit of A is Rs. 80 and of B is Rs. 40.

 The maximum demand of A is 6 units per week and B is 8 units per week. This manufacturer has set a goal of achieving a profit of Rs. 640 per week. Formulate the problem as goal programming and solve it.
- 16. State and prove maximum flow minimum cut theorem.
- 17. Minimize $(x_1-2)^2+(x_2-1)^2$ subject $x_1-2x_2+1=0$
- 18. Write all Kuhn –Tucker conditions of NLP Minimize $f(x)=x_1^2-x_1x_2+3x_2^2-4x_2+4$ subject to $g(x):1-x_1-x_2\geq 0$ and $h(x):2x_1^2+3x_2^2=13$.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.

- 19. Solve the following LPP using simplex method Minimize $f(X)=x_1-3x_2+2x_3$ Subject to $3x_1-x_2+3x_3<7, -2x_1+4x_2<12, -4x_1+3x_2+8x_3<10; x_1,x_2,x_3>0$
- 20. Solve the ILPP $Minf(x) = 4x_1 + 5x_2$ subject to $3x_1 + x_2 \ge 2$, $x_1 + 4x_2 \ge 5$, $3x_1 + 2x_2 \ge 7$, x_1 , x_2 are positive integers.

21. Find the minimum path from v_0 to v_8 ..

Arc	(0,1)	(0,2)	(0,3)	(1,2)	(1,4)	(1,5)	(2,3)	(2,5)	(3,5)	(3,6)
Length	2	6	8	3	10	8	1	1	2	4
Arc	(4,5)	(4,7)	(5,4)	(5,7)	(6,5)	(6,7)	(6,8)	(7,4)	(7,6)	(7,8)
Length	1	3	1	5	4	6	7	2	1	10

22. Maximize the function $f(x)=-3x^2+21.6x+1.0$ with a minimum resolution of $\epsilon=0.5$ over 6 functional evaluations. The optimal value of f(x) is assumed to lie in the range $25\geq x\geq 0$. (2×5=10 weightage)