

Reg No :

Name :

M Sc DEGREE (CSS) EXAMINATION, DECEMBER 2023

First Semester

CORE - ME010105 - GRAPH THEORY

M Sc MATHEMATICS,M Sc MATHEMATICS (SF)
2019 ADMISSION ONWARDS
03F40F6B

Time: 3 Hours Weightage: 30

Part A (Short Answer Questions)

Answer any **eight** questions.

Weight **1** each.

- 1. Define (a) complete bipartite graph (b) selfcomplementary graph (c) clique of a graph (d) isomorphism between graphs
- 2. If G is a simple graph and $\delta \geq \frac{n-1}{2}$ then show that G is connected.
- 3. Show that no vertex v of a simple graph can be a cut vertex of both G and G^c.
- 4. Define and give example for the following
 - (a) nonseparable graph
 - (b) block of a graph
 - (c) End block of a graph

5.

- a. Define centre of a graph and centroid of a tree.
- b. Give an example of (i) a tree with one central vertex that is also a centroidal vertex,
 - (ii) a tree with 2 centroidal vertices, one of which is also a central vertex.
- 6. Define a Hamiltonian graph and traceable graph. Give an example to show that a traceable graph need not be hamiltonian.
- 7. Describe the construction of the closure of a graph G.
- 8. Define proper vertex coloring and chromatic number.
- 9 Define a planar graph
- 10. Define a circulant of order n

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight **2** each.

- 11. Show that set Aut(G) of all automorphisms of a simple graph G is a group with respect to the composition of mappings as the group operation.
- 12. Give an example to show that $G_1[G_2]$ need not be isomorphic to $G_2[G_1]$
- 13. Let set $(v_{1,}v_{2},.....v_{n})$, $n \ge 2$ be given and let $(d_{1,}d_{2},.....d_{n})$ be a sequence of positive integers such that $\sum_{i=1}^{n}d_{i}=2(n-1) \text{ Then prove that the number of trees with } (v_{1,}v_{2},.....v_{n}) \text{ as the vertex set in which } v_{i} \text{ has degree } d_{i,} 1 \le i \le n \text{ is } \frac{(n-2)!}{(d_{1}-1)!.....(d_{n}-1)!}$
- 14. Write Prim's algorithm for determining a minimum weight spanning tree in a connected weighted graph.
- 15. Draw the graph associated with Konigsberg Bridge Problem. Is the graph Eulerian. Justify the claim.
- 16. If G is k-critical, then prove that $\delta(G) \geq k-1$.
- 17. State and prove Euler formula for a connected planar graph G and prove that the number of faces is invariant under any plane embedding of G.
- 18. Define dual of a plane graph. Draw dual of Herschel graph.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.

- 19.
- a. Show that every tournament contains a directed Hamiltonian path.
- b. Show that every tournament of order n has at most one vertex v with d+(v)=n-1.
- c. Show that every tournament T is diconnected or can be made into one by the reorientation of just one arc of T.
- 20.
- a. State and prove Whitney's theorem.
- b. Prove for any loopless connected graph G , $\kappa(G) \leq \lambda(G) \leq \delta(G)$.
- 21. a. For any graph G with n vertices and independence number α , prove that $n/\alpha \le \chi \le n-\alpha+1$. b. For any simple graph G, prove that $2\sqrt{n} \le \chi + \chi^c \le n+1$ and $n \le \chi \chi^c \le ((n+1)/2)^2$
- 22. Prove that every planar graph is 5 vertex colorable.

(2×5=10 weightage)