

QP CODE: 23145517

Reg No :

Name :

M Sc DEGREE (CSS) EXAMINATION, DECEMBER 2023

First Semester

CORE - CH500103 - QUANTUM CHEMISTRY AND GROUP THEORY

M Sc CHEMISTRY, M Sc ANALYTICAL CHEMISTRY, M Sc APPLIED CHEMISTRY , M Sc POLYMER CHEMISTRY

2019 ADMISSION ONWARDS

0689B554

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any eight questions.

Weight 1 each.

- 1. The S₃ axis generates only 2 distinct operations. Which are they and why are they said to be distinct?
- 2. What is a screw axis? Explain using an example.
- 3. Depict the GMT of C_{2v} point group.
- 4. Give the matrix representation of translational vectors in $\mathbf{C}_{2\mathbf{v}}$ point group.
- 5. State the properties of irreducible representations.
- 6. Prove that the wave functions $Y_1 = A_1 cos(npx/a)$ and $Y_2 = A_2 sin(npx/a)$ are orthogonal with the range 0 < x < a.
- 7. Explain the concept of degeneracy using the wave functions of particle in a cubic box.
- 8. Write the recursion formula. Explain its significance.
- 9. Find the commutator of angular momentum operator $[L_x L^2]$.
- 10. How can the shape of s and p orbitals be obtained from polar plots?

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any **six** questions.

Weight **2** each.

11. Duscuss briefly about the point groups associated with molecules of high symmetry?

12. Assign Mulliken symbols and substantiate your answer.

· Organization and a second	E	2C,	C,	2σ,	σ,'
$\Gamma_{\mathbf{i}}$	1	1	1	1	1
$\Gamma_{\!_2}$	1	1	1	-1	-1
Γ_3	1	-1	1	1	-1
Γ_{4}	1	-1	1	-1	1
Γ_5	2	0	-2	0	0

- 13. What are the features of an abelian group?
- 14. Reduce the representations.

C _{3V}	E	2C ₃	3σ,
$\Gamma_{RR}(1)$	21	0	3
$\Gamma_{\rm RR}(2)$	15	0	3

- 15. Discuss the failures of classical mechanics and the success of quantum theory in the explanation of black body radiation.
- 16. Explain the relationship between Cartesian and Cylindrical polar coordinates. Convert the Cartesian coordinates (1,1,3) into Cylindrical polar coordinates.
- 17. What is the relevance of spin orbitals? Discuss on how spin orbitals are constructed.
- 18. Discuss on symmetric and antisymmetric wave functions. Explain with suitable examples.

(6×2=12 weightage)

Part C (Essay Type Questions)

Answer any two questions.

Weight 5 each.

- 19. What are character tables? Applying GOT to $C_{2\nu}$ point group, derive the character table.
- 20. "Knowledge of group theory simplifies our understanding of bonding in molecules". Justify this statement and explain taking a molecule belonging to C_{2v} point group.
- 21. Apply the Schrodinger wave equation to a particle in a one dimension box and hence arrive at the wave function and possible energy values.
- 22. Solve the Schrodinger equation for a non planar rigid rotator. Discuss the results.

(2×5=10 weightage)