

QP CODE: 23145322

Reg No :

Name

e :

M Sc DEGREE (CSS) EXAMINATION, DECEMBER 2023

First Semester

CORE - ME010103 - BASIC TOPOLOGY

M Sc MATHEMATICS,M Sc MATHEMATICS (SF)
2019 ADMISSION ONWARDS
D98FE0CB

Time: 3 Hours

Weightage: 30

Part A (Short Answer Questions)

Answer any **eight** questions.

Weight **1** each.

- 1. What you mean by metrisable topology, Give an example with justification?
- 2. Define a base of a topological space? Justify with example
- 3. Define subspace of a topological space .How will you write an open set in a space using its subbase elements?Why?
- **4.** Let A be a subset of a Topological Space (X, \mathfrak{I}) . Then Show that \overline{A} is a closed set and is the smallest closed subset of X containing A.
- 5. Define strong topology.
- 6. Define quotient map and quotient topology.
- 7. Define a compact subset of a topological space X and give an example
- 8. Define connected space. If X is a connected space, prove that X cannot be written as the disjoint union of two nonempty closed subsets .
- 9. Define a path, simple path, closed path in a topological space and a path connected space
- 10. Show that every T_1 space is T_0 but not conversely

(8×1=8 weightage)

Part B (Short Essay/Problems)

Answer any six questions.

Weight 2 each.

- 11. Prove that the collection of all open sets in a metric space form a topology on the same set
- 12. Show that there exist a unique smallest topology on a non empty set X containing any given family of subsets of X

- 13. Prove that a subset of a topological space is open if and only if it is a neighborhood of each of its points.
- 14. Let $f: X \to Y$ be a function, where X, Y are topological spaces. Then prove that the following statements are equivalent (i) f is a homeomorphism, (ii) f is a continuous bijection and f is open. (iii) f is a bijection and f^{-1} is open. (iv) There exist a function $g: Y \to X$ such that f, g are continuous and $g \circ f = id_X$ and $f \circ g = id_Y$
- 15. Let X, Y be topological spaces,x∈X. and f: X→Y a function. Suppose X is first countable at x and f is continuous at x and {x_n} is a sequence in X. Prove that the sequence {f(x_n)} converges to f(x) in Y.
- 16. Let X_1, X_2 be connected topological spaces. Prove that $X_1 imes X_2$ is connected.
- 17. Let Y be a Hausdorff space and X be any space. Let f and g be any two maps from X to Y. Show that the set $\{x \in X : f(x) = g(x)\}$ is closed in X
- 18. Show that regularity is a hereditary property

(6×2=12 weightage)

Part C (Essay Type Questions)

- Answer any two questions.
 Weight 5 each.
- 19. Show that metrisability is a hereditary property
- 20. Let $f: X \to Y$ be a function, where $\mathfrak{I}, \mathcal{U}$ be topologies on X, Y respectively and $x_0 \in X$. Prove that the following statements are equivalent.(i) f is continuous at x_0 , (ii) the inverse image of every neighborhood of $f(x_0)$ in Y is a neighborhood of x_0 in X, (iii) for every subset $A \subseteq X$. $x_0 \in \overline{A}$ implies $f(x_0) \in \overline{f(A)}$
- (a) Define Lebesgue number of a cover of a topological space X.
 (b) State and prove Lebesgue covering Lemma.
- 22. Show that locally connectedness is a divisible property

(2×5=10 weightage)