

QP CODE: 23145771

Reg No	•	
Name		

B.Sc DEGREE (CBCS) REGULAR/IMPROVEMENT/REAPPEARANCE EXAMINATIONS, DECEMBER 2023

First Semester

Complementary Course - PH1CMT02 - PHYSICS - PROPERTIES OF MATTER AND THERMODYNAMICS

(Common to B.Sc Chemistry Model I, B.Sc Geology Model I)
2017 Admission Onwards
FA750B06

Time: 3 Hours

Max. Marks: 60

Part A

Answer any **ten** questions.

Each question carries **1** mark.

- 1. What is linear strain?
- 2. What is a cantilever?
- 3. If length of the cantilever is doubled without changing any other characteristics, then the depression at the loaded end will change by what factor for the same load.
- 4. Why the beams used in construction of bridges have a cross-section shape of the letter I?
- 5. Explain the excess pressure of the curved surface.
- 6. A needle floats on clear water but sinks when some detergents are added to it. Explain why?
- 7. Define critical velocity.
- 8. Mention the cause of Brownian motion.
- 9. What is meant by thermodynamic equilibrium?
- 10. Distinguish between isothermal and adiabatic process
- 11. Explain the term internal energy?
- 12. Name the four principal thermodynamic potentials.

 $(10 \times 1 = 10)$

Part B

- 13. Explain the static torsion method to find the rigidity modulus of a metal rod.
- 14. A uniform metal disc of radius 5 cm and mass 1000 g is fixed symmetrically to the lower end of a torsion wire of length 100 cm and diameter 1.2 mm, the upper end of which is fixed. The time period of torsional oscillations is 6 s. Calculate the rigidity modulus of the material of the wire.
- 15. Prove that surface tension is numerically equal to surface energy.
- 16. A liquid flows through a horizontal tube of length 0.2 m and internal radius 0.8 mm under a constant pressure head of 0.5 m. In 5 minutes 8.6 X 10⁻³ m³ of liquid is flowing out of the tube. If the density of the liquid is 10³ kg/m³, calculate the viscosity of the liquid.
- 17. Explain Bernoulli's theorem?
- 18. Calculate the increase in temperature of a gas initially at $30^{O}C$ if its pressure is suddenly doubled. Given Y=1.4
- 19. The efficiency of a Carnot's engine changes from 1/5 to 1/2 when the source temperature is raised by 120K. Calculate the temperature of the Sink?
- 20. State and explain the two versions of Second law of thermodynamics?
- 21. State and explain third law of thermodynamics and briefly explain the concept of entropy. (6×5=30)

Part C

Answer any two questions.

Each question carries 10 marks.

- Discuss about different types of elasticity and obtain the relation connecting Young's modulus (Y), Bulk modulus (K) and Poisson's ratio (σ).
- 23. Explain the terms plane of bending and axis of bending. Derive an expression for elevation at the mid-point of beam loaded uniformly on its both end.
- 24. Derive Stoke's formula. How will you determine the coefficient of viscosity of a liquid by Stoke's method?
- 25. What is the principle behind the working of a refrigerator? Define coefficient of performance and derive a relation connecting coefficient of performance and efficiency of a carnot's engine. State the second law of thermodynamics.

 $(2 \times 10 = 20)$