

QP CODE: 23146797

Reg No		
Name	:	***************************************

B.Sc DEGREE (CBCS) REGULAR/IMPROVEMENT/REAPPEARANCE EXAMINATIONS, DECEMBER 2023

First Semester

B.Sc Mathematics Model II Computer Science

Complementary Course - MM1CMT02 - MATHEMATICS - OPERATIONS RESEARCH - LINEAR PROGRAMMING

2017 Admission Onwards
DC5DEB5B

Time: 3 Hours

Max. Marks: 80

Part A

Answer any **ten** questions.

Each question carries **2** marks.

- 1. Define the term linear combination of vectors.
- 2. Define dimension of a vector space.
- 3. Define boundary point of a set.
- 4. Define a closed set.
- 5. Define a line and half line in E_n .
- 6. Define the term convex polyhedron.
- 7. Distinguish between separating and supporting hyperplanes.
- 8. Define global minima of a function $f(\mathbf{X})$
- 9. Define a convex function.
- 10. Explain general linear programming problem.
- 11. How can you formulate an LPP problem when one of the variable is unrestricted.
- Explain Slack variable in a linear programming problem.

 $(10 \times 2 = 20)$

Part B

Answer any **six** questions.

Each question carries **5** marks.

- 13. Explain consistant and inconsistant system of linear equations.
- 14. Solve the equations $x_1+x_2-2x_3+x_4+3x_5=1$ $2x_1-x_2+2x_3+2x_4+6x_5=2$ $3x_1+2x_2-4x_3-3x_4-9x_5=3$
- 15. Indicate the following form is positive definite or negative definite $x_1^2-2x_2^2+x_3^2$
- 16. Classify different types quadratic forms with examples.
- 17. Prove that $f(x)=x^2, x\in R$ is a convex function.
- 18. State the theorem which establishes the relation between the minimum of the objective function and vertex of S_F , the feasible set.
- 19. Solve graphically

Maximize
$$3x_1+2x_2$$
 subject to $x_1-x_2\leq 1, \quad x_1+x_2\geq 3, \quad x_1,x_2\geq 0$

Solve graphically

$$\begin{array}{ll} \mathsf{Maximize-}3x_1+2x_2 \\ \mathsf{subject\ to} & x_1\leq 3, \quad x_1-x_2\leq 0, \quad x_1,x_2\geq 0 \end{array}$$

20. Use simplex method to solve

Maximize
$$f=x_1+2x_2$$

Subject to $-x_1+2x_2\leq 8$
 $x_1+2x_2\leq 12$
 $x_1-x_2\leq 3$
 $x_1\geq 0, x_2\geq 0$

21. Use simplex method to solve

Maximize
$$f=2x_1+4x_2+x_3+x_4$$

Subject to $x_1+3x_2+x_4\leq 4$
 $2x_1+x_2\leq 3$
 $x_2+4x_3+x_4\leq 3$
 $x_1,x_2,x_3,x_4\geq 0$

 $(6 \times 5 = 30)$

22. Show that the following quadratic form is positive definite

$$7x_1^2+10x_2^2+7x_3^2-4x_1x_2+2x_1x_3-4x_2x_3\\$$

23. Solve graphically

Maximize
$$f=5x_1+3x_2$$

Subject to

$$4x_1 + 5x_2 \le 10$$

$$5x_1+2x_2\leq 10$$

$$3x_1 + 8x_2 \le 12$$

$$x_1 \geq 0, x_2 \geq 0$$

24. Solve by Big-M Method

Minimize
$$f=x_1+3x_2$$

Subject to

$$x_1+x_2\geq 3$$

$$x_1-2x_2\leq 2$$

$$-x_1+x_2\leq 2$$

$$x_1 \geq 0, x_2 \geq 0$$

25. Solve

Maximize
$$f=3x_1+4x_2$$

Subject to

$$4x_1+3x_2\geq 12$$

$$x_1+2x_2\leq 2$$

$$x_1 \geq 0, x_2 \geq 0$$

 $(2 \times 15 = 30)$