1910	3023
1010	9

(Pages: 3)

Reg. No	13
	x
Name	-

B.Sc. DEGREE (C.B.C.S.) EXAMINATION, JUNE 2018

Second Semester

Complementary Course

-MM2 CMT 01—Mathematics-INTEGRAL CALCULUS AND DIFFERENTIAL EQUATIONS

(2017 Admissions only)

[Common to Chemistry M I, Geology M I, Physics M I

Chemistry M II Industrial Chemistry, Physics M II Applied Electronics,
Physics M II Computer Applications, Chemistry M III Petrochemicals,
Electronics and Computer Maintenance M III, Food Science and Quality Control M III,
Geology and Water Management M III and Physics M III Electronic Equipment and
Maintenance Programmes]

Time: Three Hours

Maximum Marks: 80

Part A

Answer-any ten questions.
-- Each question carries 2 marks.

- 1. The circle is rotated about the x-axis to generate a sphere. Find the volume.
- 2. Find the length of the curve $y = \int_{0}^{x} \sqrt{\cos 2t}$ dt from x = 0 to $x = \frac{\pi}{4}$.
- 3. Find the volume of the solid generated by revolving the region bounded by the curve $y = \sqrt{2}$, the y-axis and the curve about the x-axis.
- 4. Find $\int_{1}^{2} \int_{0}^{4} xy \, dy \, dx$.
- 5. Find $\int_{0}^{2} \int_{x}^{x^{2}} dy dx.$
- 6. Find $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} dx \, dy \, dz$.

- 7. Solve the differential equation $\frac{dy}{dx} = \frac{y}{x}$.
- 8. Solve the differential equation $\frac{dy}{dx} y = e^x y^2$.
- 9. Solve $\frac{dy}{dx} + xy = y$, y(1) = 4.
- 10. Find the direction cosines of the normal to the surface $z = x^2 + y^2$ at (1, 1, 2).
- 11. Form a partial differential equation by eliminating the constants a and b from the equation z = (x+a)(x+b).
- 12. Write the standard form of a linear partial differential equation in two variables.

 $(10 \times 2 = 20 \text{ marks})$

Part B

Answer any six questions.

Each question carries 5 marks.

- 13. Evaluate $\iint_{R} (6y^2 2x) dA$, when R is the region bounded by the rectangle $0 \le x \le 1, 0 \le y \le 2$.
- 14. Evaluate $\int_{0}^{1} \int_{0}^{y^{2}} 3y^{3}e^{xy} dx dy$.
- 15. Evaluate $\int_{0}^{\pi} \int_{0}^{\pi} \int_{0}^{\pi} \cos(x+y+z) dx dy dz.$
- 16. Find the volume of the solid generated by revolving the region bounded $dy = x = y^{3/2}, x = 0$ and y = 2.
- 17. The region bounded by $y = \sqrt{x}$, the x-axis and the line x = 4 is revolved about the x-axis to generate a solid. Find the volume of the solid.
 - 18. Solve the differential equation $(3x^2y+e^y)dx+(x^3+xe^y-2y)dy=0$.
- 19. Solve the differential equation $x \frac{dy}{dx} + (3x+1)y = e^{-3x}$.

- 20. Find the solution of the equation $\frac{dx}{y(x+y)+az} = \frac{dy}{x(x+y)-az} = \frac{dz}{z(x+y)}.$
- 14
- 21. Form a partial differential equation by eliminating f from $z = xy + f(x^2 + y^2)$.

 $(6 \times 5 = 30 \text{ marks})$

Part C

Answer any **two** questions. Each question carries 15 marks.

- 22. (a) Find the area of surface generated by revolving $y = 2\sqrt{x}$, $1 \le x \le 2$ about the x-axis.
 - (b) A curved wedge is cut from a circular cylinder of radius 3 by two planes one plane is perpendicular to the axis of the cylinder and second plane crosses the first plane at 45° angle at the center of the cylinder. Find the volume of the wedge.
- 23. Find the volume of the region enclosed by the surface $z = x^2 + 3y^2$ and $z = 8 x^2 y^2$.
- 24. Solve the partial differential equation $y^2 \frac{\partial z}{\partial x} xy \frac{\partial z}{\partial y} = x(z 2y)$.
- 25. (a) Solve $(y^2 + yx) dx + x^2 dy = 0$.
 - (b) Solve $xy dx + 2x^2 + (3y^2 20) dy = 0$.

 $(2 \times 15 = 30 \text{ marks})$