(Pages: 2)

Reg. No	•
Name	

B.Sc. DEGREE (C.B.C.S.) EXAMINATION, JUNE 2018

Second Semester

Complementary Course—Physics
PH2 CMT 02—MECHANICS AND SUPER CONDUCTIVITY

(Common to Model I Chemistry and Model I Geology)

[2017 Admissions only]

Time: Three Hours

Maximum: 60 Marks

Part A

Answer any ten questions. Each question carries 1 mark.

- 1. What is meant by Acceleration? Give its unit.
- 2. What do you mean by equivalent simple pendulum?
- 3. Define angular displacement. Give its unit.
- 4. State perpendicular axes theorem.
- 5. What is a wave function?
- 6. Define wavelength and velocity. How they are related?
- 7. Define resonant frequency.
- 8. State the differential equation for damped harmonic oscillator.
- 9. Draw the resistance-temperature graph of transition from super conductor to normal material.
- 10. Draw the magnetization curve in a type I super conductor.
- 11. What is Josephson effect?
- 12. What are high temperature super conductors? Give examples.

 $(10 \times 1 = 10 \text{ marks})$

Part B

Answer any six questions.

Each question carries 5 marks.

- 13. A compound pendulum is formed by suspending a heavy ring from a point on its circumference. Determine the time period of oscillation if the radius of the ring is 1 m.
- 14. A sphere of uniform density 5520 kg/m³ and radius 6400 km, calculate the moment of inertia about its axis of rotation.

Turn over

- 15. Calculate the M I and radius of gyration of a disc of mass 1.2 kg and radius 8 cm about :
 - (a) Its diameter.
 - (b) An axis parallel to the diameter and tangential to the disc.
- 16. A partial of mass 20 gm executes SHM of amplitude 2 cm. If the time period is 20 s, find the total mechanical energy of the system.
- 17. A plane wave of frequency 256 Hz and amplitude 10⁻³mm is produced in air. Calculate the energy density and energy flux of the wave. Given, density of air = 1.29 kgm⁻³ and velocity of sound in air = 332 ms⁻¹.
- 18. Consider a wave of frequency 500 Hz travelling with a velocity of 200 m/s. Find the phase change in a time interval 10^{-3} s. Also find the path difference between two points that differ by $\frac{\pi}{2}$ radian.
- 19. The critical temperature for mercury with isotopic mass 199.5 is 4.185 K. Calculate the critical temperature when its isotopic mass changes to 203.4.
- 20. Explain BCS theory of superconductivity.
- 21. What are the applications of superconductivity? Write a note on hic Tc superconductivity.

 $(6 \times 5 = 30 \text{ marks})$

Part C

Answer any **two** questions. Each question carries 10 marks.

- 22. What is an asymmetric compound pendulum? Derive an expression for the time period of the pendulum.
- 23. Obtain the differential equation for SHM. Derive the expression for kinetic energy and potential energy and total energy of SHM.
- 24. Explain the theory of formation of beats.
- 25. What is Josephson tunneling? Discuss AC and DC Josephson effects.

 $(2 \times 10 = 20 \text{ marks})$