18103022

Reg.	No
Nam	

B.Sc. DEGREE (C.B.C.S.) EXAMINATION, JUNE 2018

Second Semester

Core Course—CH2CRT02—THEORETICAL AND INORGANIC CHEMISTRY

(Common to Chemistry M I, Chemistry M II Industrial Chemistry and Chemistry M III—
Petrochemicals)

[2017 Admissions only]

Time: Three Hours

Maximum: 60 Marks

Part A

Answer any ten questions. Each question carries 1 mark.

- 1. Why doesn't the wave nature of moving cricket ball become evident to an observer?
- 2. What are the n, l and m values for an electron in the $3 p_z$ orbital?
- 3. Define the term lattice energy.
- 4. What is LCAO principle?
- 5. Why is the bond formed from a hybrid orbital stronger than that from a pure orbital?
- 6. State Fajan's rules.
- 7. What are the limitations of Free electron theory of metals?
- 8. Which of the following molecules have no resultant dipole moment?
 - (a) CF₄.

(b) CH₃Cl.

(c) SF₆.

- (d) Xe F₂.
- 9. Which has a higher first ionisation energy N2 or O2? Why?
- 10. Most of the compounds formed by transition metals are coloured. Give reason.
- 11. Give the equation for the laboratory preparation of $K_2 Cr_2 O$?
- 12. The magnetic and spectral properties of lanthanides differ from those of 3d and 4d block elements. Explain why?

 $(10 \times 1 = 10 \text{ marks})$

Part B

Answer any **six** questions. Each question carries 5 marks.

- 13. State and explain the principles relevant in the filling up of atomic orbitals.
- 14. Give an experimental support for the wave nature of electron.

- 15. Discuss the hybridisation of the central atom in pcl_5 and in SF_6 .
- 16. What is Born-Haber cycle? Discuss with respect top NaCl.
- 17. Apply molecular orbital theory to hetero nuclear diatomic molecules.
- 18. Compare the bond length, magnetic behaviour and bond energy of O_2^{2+} , O_2^{2-} , and O_2 .
- 19. Explain the following with suitable example:
 - (a) Ionisation energy.
 - (b) Electronegativity.
 - (c) Inert pair effect.
- 20. Explain the following, properties of transition elements:
 - (a) Magnetic properties.
 - (b) Variable oxidation.
- 21. Discuss the resemblances in properties of:
 - (a) Co and Ni.
 - (b) Co and Fe.

 $(6 \times 5 = 30 \text{ marks})$

Part C

Answer any **two** questions. Each question carries 10 marks.

- 22. Discuss the valence bond theory and its limitations applied in chemical bonding with an example.
- 23. What are Vander waals forces? Explain different types of such intermolecular forces.
- 24. (a) What are lanthanides? How is it separated by con exchange method.
 - (b) What are the causes and consequences of lanthanide contraction.
- 25. Explain the preparation, properties structure and uses of $\mathrm{KMnO_4}$.

 $(2 \times 10 = 20 \text{ marks})$