

QP CODE: 19102567

Reg No :

Name :

BSc DEGREE (CBCS) EXAMINATION, OCTOBER 2019

Fifth Semester

Core Course - MM5CRT03 - ABSTRACT ALGEBRA

B.Sc Mathematics Model I,B.Sc Mathematics Model II Computer Science

2017 Admission Onwards

D91C9994

Maximum Marks: 80

Time: 3 Hours

LIBR

-X

Part A

Answer any ten questions.

Each question carries 2 marks.

- 1. State homomorphism property of a binary algebraic structure.
- 2. Define trivial subgroup and non trivial subgroup of a group G.
- 3. Define generator for a group.
- 4. Find the number of elements in the set $\{\sigma \in S_5 | \sigma(2) = 5\}$.
- 5. Find the orbits of the permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 6 & 7 & 4 & 1 & 5 & 2 \end{pmatrix}$ in S_8 .
- 6. Show that any permutation of a finite set of at least two elements is a product of transpositions. Write the identity permutation in S_n for $n \ge 2$ as a product of transpositions.
- 7. Define the alternating group A_n on n letters. What is its order?
- 8. Let G be a group. If $\phi: G \to G$ defined by $\phi(g) = g^{-1}$ is a group homomorphism, show that G is Abelian.
- 9. If $\phi: G \to G'$ is a group homomorphism and $g \in G$, show that $\phi(g^{-1}) = (\phi(g))^{-1}$.
- 10. Compute the product in the given ring a) (11) (-4) in Z_{15} b) (16) (3) in Z_{32}
- 11. Check whether Z is a field.
- 12. Prove that nZ is an ideal of the ring Z.

 $(10 \times 2 = 20)$

Part B

Answer any six questions,

Each question carries 5 marks.

13. Determine whether * defined on \mathbb{Z} by a*b=a-b is a) commutative b) associative.

Page 1/2 Turn Over

- 14. Define a group. Give an example.
- 15. a) When can we say that two positive integers are relatively prime?
 b) Prove that if r and s are relatively prime and if r divides sm, then r must divide m.
- 16. Exhibit the left cosets and the right cosets of the subgroup $3\mathbb{Z}$ of \mathbb{Z} .
- 17. State and prove the theorem of Lagrange.
- 18. Let **G** be a group. Show that Inn(G) the set of all inner automorphisms of **G** is anormal subgroup of Aut(G), the group of all automorphisms of **G**.
- 19. Define maximal normal subgroup of a group. Prove that \mathbf{M} is a maximal normal subgroup of a group \mathbf{G} if and only if the factor group \mathbf{G}/\mathbf{M} is simple.
- 20. Prove that every finite integral domain is a field
- 21. State and prove Fundamental homomorphism theorem for rings

(6×5=30)

Part C

Answer any two questions.

Each question carries 15 marks.

- 22. Let G be a group with binary operation * .Then prove the following:
 - a) The left and right cancellation laws hold in $oldsymbol{G}$.
 - b) The linear equations a*x=b and y*a=b have unique solutions x and y in G, where a and b are any elements of G.
- 23. State and prove Cayley's theorem. Give the elements for the left regular representation and the

group table of the group given by the group table

- 24. Let H be a subgroup of a group G. prove that aHbH = abH defines a binary operation on G/H if and only if H is a normal subgroup of G. Then furthere show that if H is a normal subgroup of a group G then G/H is a group, under the binary operation aHbH = abH.
- 25. a) Prove that the divisors of 0 in Z_n are those nonzero elements that are not relatively prime to n.
 - b) Find the divisors of Z₁₆
 - c) Prove that Z_p , where p is prime has no divisors of $\ 0$.

 $(2 \times 15 = 30)$

